
2025 年版 トランザクションID 関連の
問題の傾向と対策

株式会社SRA OSS

© 2025 SRA OSS K.K. 1

会社紹介

© 2025 SRA OSS K.K. 2

株式会社SRA OSS
所 在 地: 東京都豊島区南池袋2-32-8

設 立 日: 2022年6月17日

株 主: 株式会社SRA

 株式会社NTTデータ

資 本 金: 7,000万円

社 長: 稲葉 香理

事業内容

• オープンソースソフトウェア (OSS) 関連の
サポート、製品開発・販売、構築・コンサル

• OSSの教育、開発、コミュニティ運営支援

• ソフトウェアの研究開発

顧 問: 石井達夫

技術顧問:増永 良文 (お茶の水女子大学名誉教授)

1999 2003 2005 202220142011 2012

PostgreSQL
サポート開始

PowerGres
販売開始

SRA OSS, Inc.
設立

OSSプロフェッショナル
サポート開始

Zabbix
サポート開始

Pgpool-II単体
サポート開始

SRA OSS合同会社
設立

2024

株式会社SRA OSS

に組織変更

自己紹介

© 2025 SRA OSS K.K. 3

三和 陽菜
• SRA OSS OSS事業本部 データベース技術グループ所属

• PostgreSQLのサポート、トレーニング講師を担当

 鳥越 淳
• SRA OSS OSS事業本部 データベース技術グループ所属

• PostgreSQLのサポート、案件支援などに従事

• PostgreSQL Contributor。主にモニタリング周りの機能開発

目次

• トランザクションIDとそれに関連する問題

• マルチトランザクションIDとそれに関連する問題

© 2025 SRA OSS K.K. 4

トランザクションID
とそれに関連する問題

© 2025 SRA OSS K.K. 5

前提として.. 追記型アーキテクチャ

• PostgreSQLは追記型のMVCC(多版型同時実行制御)を採用しており、1つ
の論理的なデータに対して複数の物理的なバージョンの行を持つ
• トランザクション開始タイミングや分離レベルによって、見えるべきデータのバー

ジョンが違うため、DELETE文などで削除が実行されても削除前のバージョンの行も
残す

• どのトランザクションからも参照されなくなった古い行は不要なので、VACUUMに
より回収される

• トランザクションごとに、どのバージョンの行を見せるべきかの判断(可
視性判断)が必要

• トランザクションIDはこの可視性判断に利用される

© 2025 SRA OSS K.K. 6

西暦 出来事

A0 794 平安京遷都

B0 1192 鎌倉幕府成立

B1 1185 鎌倉幕府成立

１つの論理的なデータ
に対して、複数の行
バージョンを持つ

トランザクションIDについて

• トランザクションIDは、トランザクションに払い出される固有のID

• トランザクションIDは、基本的にトランザクションが開始して初めて
データの変更処理を行ったタイミングで払い出される

• 32bitの非負数であり、約42億で循環する

• 循環して使い続けるための仕組みがある

• 前後約20億トランザクションで分割され、自分より古い値を過去、自分
より新しい値を未来として扱う

© 2025 SRA OSS K.K. 7

103

未来

過去

0

トランザクションID

• トランザクションIDは、通常変更処理の際に発行される

© 2025 SRA OSS K.K. 8

=# BEGIN;
BEGIN
=*# SELECT pg_current_xact_id_if_assigned ();
pg_current_xact_id_if_assigned

(1 row)

=*# INSERT INTO test VALUES (1);
INSERT 0 1
=*# SELECT pg_current_xact_id_if_assigned();
pg_current_xact_id_if_assigned

756
(1 row)

変更が無け
れば、トラ
ンザクショ
ンIDは発行
されない

データが変
更されると、
トランザク
ションIDが
発行

トランザクションID
• トランザクションIDは、メタデータとして各タプルに格納されている

© 2025 SRA OSS K.K. 9

=# CREATE EXTENSION pageinspect;
=# INSERT INTO test VALUES (1);
INSERT 0 1
=# SELECT t_xmin, t_xmax FROM
heap_page_items(get_raw_page('test',0));
t_xmin | t_xmax
--------+--------

762 | 0
(1 row)

=# UPDATE test SET id = 2;
UPDATE 1
=# SELECT t_xmin, t_xmax FROM
heap_page_items(get_raw_page('test',0));
t_xmin | t_xmax
--------+--------

762 | 763
763 | 0

(2 rows)

更新すると、
新旧両方の
タプルにト
ランザク
ションIDが
入る

xminにその
トランザク
ションのト
ランザク
ションIDが
記録される

削除を実行したトランザ
クションIDがxmaxに記録
される

© 2025 SRA OSS K.K.

可視性判断の例①

• トランザクションIDは、可視性判断に使用される

© 2025 SRA OSS K.K. 10

xmin xmax 行データ

101 test1

103 test2

txid = 101のトランザクション
まではコミット済み。

xmin xmax 行データ

101 test1

txid = 102, 103が開始する。
txid = 103がtest2をINSERTした。
コミットはまだされていない。

可視性判断の例②

• トランザクションIDは、可視性判断に使用される

© 2025 SRA OSS K.K. 11

xmin xmax 行データ

101 test1

103 test2

txid=102にとって、test2の行
は不可視。(txid=103は未コ
ミットのため。)
test1のみ表示する。

102

txid=103にとって、test2の行
は可視。(自分が追加した行
のため。)
test1, test2を表示する。

103

=# SELECT * FROM t1;
c

test1
(1 row)

=# SELECT * FROM t1;
c

test1
test2
(2 rows)

トランザクションIDの周回
• トランザクションIDは約42億で循環する

• txid = 103が基準の時、約21億ずつ分割し、103より大きい値が「未
来」、103より小さいほうの値が「過去」となる

• txidが進むと、どの値が未来/過去かの判定が変わっていく(しばらくは
txid=103は過去)

• 約21億進むと、今まで過去のIDとして扱われていたtxid=103が未来とし
て扱われるようになってしまう＝トランザクションID周回

© 2025 SRA OSS K.K. 12

0
103

未来

過去

0
103

未来 過去

0

未来 過去

103 103

未来

過去

0

2^31+103

トランザクションIDの消費が進む

103

未来

過去

0

最新のtxid

FREEZE①

• トランザクションIDが約21億を超えて発行できるよう、FREEZEという
仕組みが備わっている

• トランザクションIDによって未来のタプルと判断される可能性があるの
は、そのタプルが持つxminより古いトランザクションが実行中の場合

• あるタプルのxminより古いトランザクションがすべて終了しており、現
在実行中のトランザクションがすべてそのxminより新しいトランザク
ションの場合、そのタプルは現在存在しているどんなトランザクションよ
り古いトランザクションによって作成されたことは明らか=可視性判断の
結果が可視となる

© 2025 SRA OSS K.K. 13

FREEZE②

• 比較するトランザクションIDがどのような値であっても、それより過去
に更新された行として扱うようフラグを立てる処理(FREEZE)を行ってい
る
• かつては2という値に実際にxminを書き換えられていたが, 今はxminは書き換えず、

別途フラグを立てている

• FREEZEは、VACUUM時に合わせて行われる

• 問題なくFREEZEできていれば、周回問題は回避できる
• トランザクションIDが一周したとしても、FREEZE済みのタプルは過去のものとして

扱えばよい

© 2025 SRA OSS K.K. 14

103

未来

過去

0

2^31+103

xmin xmax t_infomask 行データ

101 XMIN_FROZEN test1

103 XMIN_FROZEN test2

FREEZE済みフラグがついている
ので、過去のトランザクション
によって作成されたものだとわ
かる

FREEZEのタイミング
• vacuum_freeze_min_age(デフォルト5000万)

• 行に記録されているxminがこの年代を超えたらFREEZEを行うようになる

• vacuum_freeze_table_age(デフォルト1.5億)
• pg_class.relfrozenxidがこの年代に達すると、VACUUM時に積極的にFREEZEを行う
• 通常は無効タプルが存在しているページのみをスキャンするところ、未凍結のタプルが

存在するすべてのページをスキャンして未凍結のタプルをFREEZEする

• autovacuum_freeze_max_age(デフォルト2億)
• pg_class.relfrozenidがこのパラメータで指定した年代に達したら、凍結状態でない行を

含む可能性のあるテーブルに対し自動VACUUMを開始する
• autovacuum = offでも発生

• vacuum_failsafe_age(デフォルト16億)
• pg_class.relfrozenxidがこの年代に達すると、トランザクションID周回回避のために全

力でVACUUMを行うようになる
• コストベースの遅延を行わず、インデックスのバキュームなど緊急でない作業はスキップ

• バッファアクセスストラテジは無効になり、VACUUMが共有バッファのすべてを自由に使用す
るようになる

© 2025 SRA OSS K.K. 15

周回問題を引き起こすケース

• FREEZEがうまくできていれば問題ないが、FREEZEを阻害するような問
題があると、周回問題が発生する

• 実行中のトランザクション以後のトランザクションIDはFREEZEできない
ため、ロングトランザクションが典型的な阻害要因

• 他、使用していないレプリケーションスロットや、孤児となったプリペア
ドトランザクション(2相コミット)がFREEZEを阻害する
• 論理レプリケーションではレプリケーションスロットが必ず作成されるため、論理

レプリケーションが普及するにつれ、問題となるケースが増えている印象

© 2025 SRA OSS K.K. 16

周回が近づいた場合の動作

• データベースの最も古いトランザクションIDが周回地点から4000万に達
すると、WARNINGが発生

• pg_databaseのdatfrozenxidにそのデータベースの中で最も古いトランザクション
IDが記録されている

• datfrozenxidはFREEZE実行時に更新される

• 周回までのトランザクション数が300万未満になると、PostgreSQLは新
しいトランザクションIDの割り当てを拒否、更新処理実施不可になる

• すでに開始されているトランザクションは継続できる

• 新しく開始したトランザクションでは、読み取りのみが可能となる

© 2025 SRA OSS K.K. 17

WARNING: database "mydb" must be vacuumed within 39985967 transactions
HINT: To avoid XID assignment failures, execute a database-wide VACUUM in that database.

ERROR: database is not accepting commands that assign new XIDs to avoid wraparound data loss
in database "mydb"
HINT: Execute a database-wide VACUUM in that database.

周回問題を発生させてみる①

• 周回問題を発生させるには、トランザクションIDを大量に消費する必要
がある
• pg_current_xact_id()関数は、実行すると現在トランザクションIDが割り当てられ

ていない場合に、新しくトランザクションIDを割り当てる

• pg_current_xact_id()を21億回実行してもよいが、実行に時間がかかる

• 今回はxid_wraparoundモジュールを使用
• PostgreSQL 17から追加されたテスト用モジュール

• ソースコードからビルドした場合に利用可能

• トランザクションIDの発行を適度にスキップするため、高速にトランザクションID
を進めることができる

© 2025 SRA OSS K.K. 18

周回問題を発生させてみる②

• トランザクションを開始し、INSERTする

© 2025 SRA OSS K.K. 19

=# BEGIN;
BEGIN
=*# INSERT INTO test VALUES (1);
INSERT 0 1
=*# SELECT xmin, c FROM test;
xmin | c
------+---
759 | 1

(1 row)

周回問題を発生させてみる③

• 現在のデータベースの凍結済みトランザクションIDと、その年代を確認
する

• age()について
• 指定されたトランザクションIDと、現在のトランザクションID間のトランザクショ

ン数を返す関数

• 周回問題が発生しないかを監視するには、このage()を使用すると便利

© 2025 SRA OSS K.K. 20

=# SELECT datname, datfrozenxid, age(datfrozenxid) FROM
pg_database;
datname | datfrozenxid | age

-----------+--------------+-----
postgres | 748 | 23
template1 | 748 | 23
template0 | 748 | 23
(3 rows)

周回問題を発生させてみる④

• 別の接続で、トランザクションIDが残り4000万を切るまで進める
• consume_xids()関数に進めるxid数を指定する

© 2025 SRA OSS K.K. 21

=# SELECT consume_xids('2107483647');

=# SELECT relname,relfrozenxid, age(relfrozenxid) FROM pg_class WHERE relname = 'test';
relname | relfrozenxid | age
---------+--------------+------------
test | 759 | 2107483660
(1 row)

=# SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;
datname | datfrozenxid | age

-----------+--------------+------------
postgres | 759 | 2107483660
template1 | 759 | 2107483660
template0 | 759 | 2107483660
(3 rows)

testテーブ
ルのageが
21億を超え
る

周回問題を発生させてみる⑤

• 使用可能なトランザクションID数が残り4000万を切ると、更新処理時に
WARNINGメッセージが出るようになる
• 更新処理自体には成功する

© 2025 SRA OSS K.K. 22

=# INSERT INTO test VALUES (2);
WARNING: database "postgres" must be vacuumed within 39999987 transactions
HINT: To avoid transaction ID assignment failures, execute a database-wide VACUUM in that
database.
You might also need to commit or roll back old prepared transactions, or drop stale replication
slots.
INSERT 0 1

周回問題を発生させてみる⑥

• 残り300万を切るようにさらにトランザクションIDを進める

© 2025 SRA OSS K.K. 23

=# SELECT consume_xids(‘37000000’);

=# SELECT relname,relfrozenxid, age(relfrozenxid) FROM pg_class WHERE relname = 'test';
relname | relfrozenxid | age
---------+--------------+------------
test | 759 | 2144483647
(1 row)

=# SELECT datname, datfrozenxid, age(datfrozenxid) FROM pg_database;
datname | datfrozenxid | age

-----------+--------------+------------
postgres | 759 | 2144483647
template1 | 759 | 2144483647
template0 | 759 | 2144483647
(3 rows)

周回問題を発生させてみる⑦

• 残り300万を切ると、更新処理時にエラーが発生するようになる

• ただし、この状態でも参照処理は可能(DBが停止するわけではない)

© 2025 SRA OSS K.K. 24

postgres=# INSERT INTO test VALUES (3);
ERROR: database is not accepting commands that assign new transaction IDs to avoid wraparound
data loss in database "postgres"
HINT: Execute a database-wide VACUUM in that database.
You might also need to commit or roll back old prepared transactions, or drop stale replication
slots.

=# SELECT * FROM test;
c

2
(1 row)

発生させた場合の対処①

• FREEZEを阻害する要因を特定し、取り除く

• ロングトランザクション

• 古いプリペアドトランザクション

• 使われていないレプリケーションスロット

© 2025 SRA OSS K.K. 25

--調査方法

SELECT * FROM pg_prepared_xacts ORDER BY prepared LIMIT 10;
--解消方法
ROLLBACK PREPARED '《transactionid》';

--調査方法

SELECT * FROM pg_stat_activity ORDER BY xact_start LIMIT 10;
--解消方法
SELECT pg_terminate_backend(《PID》);

--調査方法

SELECT * FROM pg_replication_slots;
--解消方法
SELECT pg_drop_replication_slot('《スロット名》');

発生させた場合の対処②

• FREEZEを阻害する要因を取り除いたら、VACUUMを実行する
• データベース全体に対して行うのが簡単

• 時間を短縮したいのであれば、relfrozenxidが最も古いテーブルに対して行ってもよ
い

• VACUUM FULLは失敗するため使用しない

• VACUUM FREEZEも使用しない
• 復旧に必要な最小限の作業を超えた作業を行うため

• 古いバージョンではpostmasterを停止してシングルユーザモードで
VACUUMを実行するように、という指示があったが、最近のバージョン
(PG14~)ではこの手順は推奨されない
• シングルユーザモードによるVACUUMは時間がかかる

• VACUUMのモニタリングも難しい

© 2025 SRA OSS K.K. 26

モニタリング

• 周回問題が発生すると影響が大きいため、モニタリングを実施し事前に検
知・対処することが重要

• pg_class, pg_databaseにこのトランザクションidより前は全て凍結済み
であることを記録する列があるので、そちらを監視する

• ageが増加傾向にある場合、FREEZEが阻害されている可能性あり

• vacuum_failsafe_ageを超えると、周回問題が近づいていて危険な状態

© 2025 SRA OSS K.K. 27

SELECT datname, age(datfrozenxid) FROM pg_database ORDER BY age DESC;
SELECT relname, age(relfrozenxid) FROM pg_class WHERE relkind IN ('r',
'm') ORDER BY age DESC;

マルチトランザクションID
とそれに関連する問題

© 2025 SRA OSS K.K. 28

前提として..行ロックの話

• たとえば、ある行を更新する場合、他のトランザクションから更新されな
いようにロックが必要。このために利用されるのが行ロック

• 行ロックは大量に発生しうるため、テーブル単位のロックなどと同様に管
理すると、管理対象が多くなりすぎるため不適切

• PostgreSQLでは、行ロックを取得する場合、ロック対象行のタプルの
ヘッダにトランザクションIDを記録して実現

• 行ロックが使われるケース例: 明示的なSELECT…FOR ~による共有業
ロック、外部キー制約がある参照元テーブルの更新

© 2025 SRA OSS K.K. 29

(接続1)=# begin; insert into pgbench_accounts values (1000000, 1, 0, ‘‘);
(接続1)=# select txid_current_if_assigned();
 792
 (接続1)=# select xmax, * from pgbench_branches;

xmax | bid | bbalance | filler
------+-----+----------+--------
792 | 1 | 0 | [NULL]

pgbench -i --foreign-keysで外部制約付きで作成したテーブルへの操作

トランザク
ションIDを
記録

© 2025 SRA OSS K.K.

前提として..行ロックの話

• pgrowlocksエクステションを利用すると、取得しているロックのモード
やpidなど、行ロックの詳細な情報が確認できる:

© 2025 SRA OSS K.K. 30

=# create extension pgrowlocks;
=# select * from pgrowlocks('pgbench_branches');

locked_row | locker | multi | xids | modes | pids
------------+--------+-------+-------+-------------------+---------
(0,1) | 792 | f | {792} | {"For Key Share"} | {67334}

マルチトランザクションIDを作ってみる

• 典型的には、複数のトランザクションが同一行に対して行ロックを取得す
る際に利用される

• “タプルのヘッダにトランザクションIDを記録”している領域のサイズは、
1トランザクション分しかない。このため複数トランザクションが同一行
をロックする場合サイズが不足:

© 2025 SRA OSS K.K. 31

=# select xmax, * from pgbench_branches;
xmax | bid | bbalance | filler
------+-----+----------+--------
792 | 1 | 0 | [NULL]

書けるIDは
1つだけ!

マルチトランザクションIDを作ってみる

• この問題を、複数トランザクションとそのロック状態をまとめて新たに1
つのIDを付与して解決している。この１つにまとめたIDがマルチトラン
ザクションID:

© 2025 SRA OSS K.K. 32

(接続1)=# begin; insert into pgbench_accounts values (1000000, 1, 0, ‘‘); --トランザクションID:775
(接続2)=# begin; insert into pgbench_accounts values (1000001, 1, 0, ‘‘); --トランザクションID:776
=# select xmax, * from pgbench_branches ;
xmax | bid | bbalance | filler
------+-----+----------+--------

1 | 1 | 0 | [NULL]

=# select * from pgrowlocks('pgbench_branches');
locked_row | locker | multi | xids | modes | pids

------------+--------+-------+-----------+-----------------------------------+---------------
(0,1) | 1 | t | {775,776} | {"For Key Share","For Key Share"} | {77054,77419}

マルチトラ
ンザクショ
ンID！

マルチトランザクションIDを作ってみる

• pgrowlocksがインストールされていない環境では本体同梱の
pg_get_multixact_members()関数を使っても、マルチトランザク
ションの内容が確認できる。:

© 2025 SRA OSS K.K. 33

=# select pg_get_multixact_members('1');
pg_get_multixact_members

(775,keysh)
(776,keysh)

マルチトランザクションIDを作ってみる

• 行ロックを取得するトランザクションが増えると、新たにマルチトランザ
クションIDが払い出される。既存のマルチトランザクションIDにトラン
ザクションIDが追加されるわけではない点注意:

© 2025 SRA OSS K.K.
34

..前ページからの続き..
(接続3)=# begin; insert into pgbench_accounts values (1000002, 1, 0, '');

=# select * from pgrowlocks('pgbench_branches');
locked_row | locker | multi | xids | modes | pids

------------+--------+-------+---------------+---+---------------------
(0,1) | 2 | t | {775,776,778} | {"For Key Share","For Key Share","For Key Share"} |

{77054,77419,77559}

=# select pg_get_multixact_members('2');
pg_get_multixact_members

(775,keysh)
(776,keysh)
(778,keysh)

マルチトランザクショ
ンIDごとにmemberの
数が違う点も注意！

新しいマルチトランザ
クションIDである2

マルチトランザクションIDの特徴

• 32bit。これは普通のトランザクションIDと同じ

• 普通のトランザクションIDと同様に、周回予防のためのパラメー
タがある:
• autovacuum_multixact_freeze_max_age (cf. autovacuum_freeze_max_age)

• vacuum_multixact_freeze_table_age (cf. vacuum_freeze_table_age)

• vacuum_multixact_failsafe_age (cf. vacuum_failsafe_age)

• 各マルチトランザクションIDを構成するトランザクションIDの情
報は、$PGDATA/pg_multixact以下に保存

• キャッシュする仕組みもあり

• memberを保存する領域にも上限がある。次に払い出す上限を超
過しそうになると当該トランザクションが実行できなくなる

© 2025 SRA OSS K.K. 35

マルチトランザクションIDの特徴

• 32bit。これは普通のトランザクションIDと同じ

• 普通のトランザクションIDと同様に、周回予防のためのパラメー
タがある:
• autovacuum_multixact_freeze_max_age (cf. autovacuum_freeze_max_age)

• vacuum_multixact_freeze_table_age (cf. vacuum_freeze_table_age)

• vacuum_multixact_failsafe_age (cf. vacuum_failsafe_age)

• 各マルチトランザクションIDを構成するトランザクションIDの情
報は、$PGDATA/pg_multixact以下に保存

• キャッシュする仕組みもあり

• memberを保存する領域にも上限がある。次に払い出す上限を超
過しそうになると当該トランザクションが実行できなくなる

© 2025 SRA OSS K.K. 36

周回問題
(今回は割愛)

キャッシュ
問題

member
space枯渇
問題

キャッシュ問題

問題

• pg_multixact/以下のストレージに都度アクセスするのは性能上の問題に
なりうる。そこで共有メモリ上にキャッシュを保存している
• 具体的にはSLRUと呼ばれるLeast Recently Usedで管理されるバッファを利用

• マルチトランザクションはメンバ数が可変なので、memberのほかoffsetもSLRUで
管理

• PostgreSQL 17まではこのキャッシュのサイズが固定だったため、ワー
クロードによってはキャッシュの入れ替えが頻発すると、性能低下するこ
とがあった

© 2025 SRA OSS K.K. 37

2

offset

members

310

3

313

4

…. ….

775 776…. ….

310

778

311 312

781

313

マルチトラン
ザクションID

キャッシュ問題
モニタリング

• pg_stat_slruビューのmultixact_offset、multixact_memberのblks_hit,
blks_readでキャッシュヒット状況を確認

• 待機イベント: MultiXactOffsetControlLock, MultiXactMemberControlLock
の増加

対処

• PostgreSQL 17では、offset、memberのキャッシュサイズを指定するGUC
として、multixact_offset_buffers, multixact_member_buffersが追
加されたので、こちらをチューニング

• なお、単純にキャッシュサイズを増やすだけでは逆に性能低下するケースも
あったため、キャッシュを小分けにしてそれぞれ独立してロック管理する改
善も同時に導入されている

© 2025 SRA OSS K.K. 38

https://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=53c2a97a9266

member space枯渇問題

問題

• memberを保存する領域にも上限がある。上限を超過しそうになると当
該トランザクションが失敗する:

• マルチトランザクションの数に余裕があっても発生する

• 1つ行に対する共有ロックを複数のバックエンドが取得する場合、使用す
るmember数は、二次関数的に増加する点に注意

© 2025 SRA OSS K.K. 39

ERROR: multixact "members" limit exceeded
This command would create a multixact with %u members, but the remaining space is only

enough for %u member

バックエンド数 マルチトランザクションID数 総member数

2 1 2

3 2 3 + 2

4 3 4 + 3 + 2

N n-1 n(n+1)/2 - 1
© 2025 SRA OSS K.K.

member space枯渇問題
モニタリング

• v18時点でmember spaceの消費状況を直接確認する手段は提供されてい
ない

• コミュニティにて議論中
[Proposal] Expose internal MultiXact member count function for

efficient monitoring

対処

• 不要なマルチトランザクションIDを利用しているトランザクションがあ
れば終了させる

• VACUUMを実行。vacuum_multixact_freeze_min_ageと
vacuum_multixact_freeze_table_ageを小さく設定してFREEZE対象を
増やすとよい

© 2025 SRA OSS K.K.

https://www.postgresql.org/message-id/flat/CA+QeY+AAsYK6WvBW4qYzHz4bahHycDAY_q5ECmHkEV_eB9ckzg@mail.gmail.com
https://www.postgresql.org/message-id/flat/CA+QeY+AAsYK6WvBW4qYzHz4bahHycDAY_q5ECmHkEV_eB9ckzg@mail.gmail.com
https://www.postgresql.org/message-id/flat/CA+QeY+AAsYK6WvBW4qYzHz4bahHycDAY_q5ECmHkEV_eB9ckzg@mail.gmail.com
https://www.postgresql.org/message-id/flat/CA+QeY+AAsYK6WvBW4qYzHz4bahHycDAY_q5ECmHkEV_eB9ckzg@mail.gmail.com

まとめ

• トランザクションID周回問題は、発生すると更新処理が実施で
きなくなる、サービス停止につながる重大な問題

• 自動VACUUMに任せておけば問題が起こらずに済むことも多い
が、ロングトランザクション・レプリケーションスロットの削
除忘れなどには注意が必要。また更新トランザクション数が多
い場合も注意が必要

• マルチトランザクションIDでは、周回問題に加え、キャッシュ
問題・ｍember space枯渇問題という問題もある

• それぞれモニタリングの実施と対処手順を事前に把握しておき
ましょう

© 2025 SRA OSS K.K. 41

	スライド 1: 2025 年版 トランザクションID 関連の 問題の傾向と対策
	スライド 2: 会社紹介
	スライド 3: 自己紹介
	スライド 4: 目次
	スライド 5
	スライド 6: 前提として.. 追記型アーキテクチャ
	スライド 7: トランザクションIDについて
	スライド 8: トランザクションID
	スライド 9: トランザクションID
	スライド 10: 可視性判断の例①
	スライド 11: 可視性判断の例②
	スライド 12: トランザクションIDの周回
	スライド 13: FREEZE①
	スライド 14: FREEZE②
	スライド 15: FREEZEのタイミング
	スライド 16: 周回問題を引き起こすケース
	スライド 17: 周回が近づいた場合の動作
	スライド 18: 周回問題を発生させてみる①
	スライド 19: 周回問題を発生させてみる②
	スライド 20: 周回問題を発生させてみる③
	スライド 21: 周回問題を発生させてみる④
	スライド 22: 周回問題を発生させてみる⑤
	スライド 23: 周回問題を発生させてみる⑥
	スライド 24: 周回問題を発生させてみる⑦
	スライド 25: 発生させた場合の対処①
	スライド 26: 発生させた場合の対処②
	スライド 27: モニタリング
	スライド 28
	スライド 29: 前提として..行ロックの話
	スライド 30: 前提として..行ロックの話
	スライド 31: マルチトランザクションIDを作ってみる
	スライド 32: マルチトランザクションIDを作ってみる
	スライド 33: マルチトランザクションIDを作ってみる
	スライド 34: マルチトランザクションIDを作ってみる
	スライド 35: マルチトランザクションIDの特徴
	スライド 36: マルチトランザクションIDの特徴
	スライド 37: キャッシュ問題
	スライド 38: キャッシュ問題
	スライド 39: member space枯渇問題
	スライド 40: member space枯渇問題
	スライド 41: まとめ

