
PostgreSQL 17
増分バックアップの実践活用と

運用上の考慮点

株式会社 SRA OSS
越野 太基

© 2025 SRA OSS K.K. 1

自己紹介

© 2025 SRA OSS K.K. 2

• 名前： 越野 太基

koshino@sraoss.co.jp

• 所属：株式会社SRA OSS

技術部 データベース技術グループ

• 職務：

• PostgreSQL技術サポート

• PostgreSQLクラスタ管理ツールPgpool-II開発者

mailto:pengbo@sraoss.co.jp
mailto:pengbo@sraoss.co.jp

目次

• PostgreSQL の増分バックアップの有用性

• PostgreSQL 標準機能による増分バックアップ手順

• リストア手順

• まとめ

© 2025 SRA OSS K.K. 3

PostgreSQLの
増分バックアップの有用性

© 2025 SRA OSS K.K. 4

PostgreSQLのバックアップ方法の種類

•論理バックアップ
• SQL ステートメントとして保存、pg_dump などのツールで実行

• テーブル単位の復元が可能

• 異なるバージョン間の移行に適している

•物理バックアップ
• データベースファイルをそのままコピー、 pg_basebackup 等実行

• フルバックアップ

• 増分バックアップ

• PITR に対応している

★今回は物理バックアップに注目

© 2025 SRA OSS K.K. 5

フルバックアップと増分バックアップ

• フルバックアップ
• データディレクトリ全体をコピーする方法

•増分バックアップ
• 前回のバックアップ以降で変更・追加された部分だけを保存する方法

© 2025 SRA OSS K.K. 6

フルバックアップ vs 増分バックアップ

• 複数世代を管理するのに非常に効率的
• ※手順の誤りが起きやすい点には注意

• 統合前に最新のフルバックアップファイルを消してしまうなど

© 2025 SRA OSS K.K. 7

ストレージコスト

(例)1 TB DB を
30 日分管理する場合

バックアップ時間

(例)10 % の変更
サーバーへの負荷

フルバックアップ

各バックアップで
フルサイズ

(例)
1 TB × 30 = 30 TB

全ファイルをバック
アップする時間がかか
る

取得時間が長いため
比較的高い

増分バックアップ

初回フルバックアップ
＋増分のみ

(例)
1TB + 増分サイズのみ

増分の取得時間のみ

(例)
10 % の変更で
より短時間で取得

取得時間が短いため
比較的負荷は低い

PostgreSQL 標準機能による
増分バックアップ手順

© 2025 SRA OSS K.K. 8

PostgreSQL17の新機能

増分バックアップが公式機能に

• pg_basebackup コマンドの拡張
• --incremental オプションが追加、増分のみ取得可能に

• pg_combinebackup
• フルバックアップと増分バックアップを統合

•新パラメータの追加
• summarize_wal, wal_summary_keep_time などのパラメータ追加

• Windows 環境で利用可能
• pg_rman などは非対応だった Windows 環境でもバックアップ可能

• pg_rman: 増分バックアップを可能にするサードパーティモジュール

© 2025 SRA OSS K.K. 9

pg_basebackup による増分バックアップ

•実行環境(例)

•パラメータ

領域 パス 備考

データベースクラスタ data

WAL領域 data/pg_wal

バックアップ格納先 backup フルバックアップ、
増分バックアップを保存

パラメータ名 設定値 備考

summarize_wal on(off がデフォルト) onでないと
増分バックアップ不可

wal_level replica(デフォルト) 以上 summarize_wal が on の時
は replica 以上が必須

© 2025 SRA OSS K.K. 10

フルバックアップ取得前のテーブル状態

• full_backup というテーブルがあるだけの状態
• 増分バックアップを取得前にテーブルを追加し
任意の時点に戻れるか検証する

$ psql
psql (17.6)
"help"でヘルプを表示します。
postgres=# ¥d

リレーション一覧
 スキーマ | 名前 | タイプ | 所有者
----------+-------------+----------+----------
public | full_backup | テーブル | postgres

(1 行)

© 2025 SRA OSS K.K. 11

pg_basebackup による増分バックアップ

フルバックアップ取得→増分バックアップ取得→統合で実施

• フルバックアップを取得

• テストテーブル inc1 を作成

-P オプションでサイズや進捗を確認可能
$ pg_basebackup -D backup/full -P
23818/23818 kB (100%), 1/1 テーブル空間

postgres=# create table inc1 (i int);
CREATE TABLE
postgres=# ¥d

リレーション一覧
 スキーマ | 名前 | タイプ | 所有者
----------+------+----------+----------
public | full_backup | テーブル | postgres
public | inc1 | テーブル | postgres

© 2025 SRA OSS K.K. 12

pg_basebackup による増分バックアップ

•一回目の増分バックアップを取得

• --incrementalで直前のバックアップマニフェストファイルを参照する

• inc2 テーブルを作成後二回目の増分バックアップを取得

• 注意点：前回バックアップの backup_manifest を参照する

$ pg_basebackup --incremental=backup/fullbackup_manifest -D backup/inc1

postgres=# create table inc2 (i int);
CREATE TABLE
$ pg_basebackup --incremental=backup/inc1backup_manifest -D backup/inc2

© 2025 SRA OSS K.K. 13

増分バックアップの base ディレクトリ

•増分バックアップの中身

トップディレクトリは通常のバックアップと変わりなし
$ ls backup/inc1/
PG_VERSION pg_commit_ts pg_replslot pg_twophase
backup_label pg_dynshmem pg_serial pg_wal
backup_manifest pg_hba.conf pg_snapshots pg_xact
base pg_ident.conf pg_stat postgresql.auto.conf
current_logfiles pg_logical pg_stat_tmp postgresql.conf
global pg_multixact pg_subtrans
log pg_notify pg_tblspc

base 以下に増分バックアップ特有のファイルがあることから増分と判断できる
$ ls backup/inc1/base/1/
1247_fsm 4163 INCREMENTAL.2652 INCREMENTAL.3394
1249_fsm 4165 INCREMENTAL.2653 INCREMENTAL.3394_vm
1255_fsm 4167 INCREMENTAL.2654 INCREMENTAL.3395
1259_fsm 4169 INCREMENTAL.2655 INCREMENTAL.3431

© 2025 SRA OSS K.K. 14

増分バックアップの統合とリストア

• pg_combinebackup でフルバックアップ～任意の増分地点まで統合
• pg_verifybackup で検証もセットで行うこと

フルバックアップからinc1(inc1 テーブルがある地点)まで
$ pg_combinebackup -o backup/combine_full_inc1 backup/full/ backup/inc1

フルバックアップからinc2(inc1, inc2 テーブルがある地点)まで
$ pg_combinebackup -o backup/combine_full_inc2 backup/full/ backup/inc1 backup/inc2/

各統合バックアップを pg_verifybackup で検証
$ pg_verifybackup backup/combine_full_inc1
バックアップが正常に検証されました
$ pg_verifybackup backup/combine_full_inc2
バックアップが正常に検証されました

© 2025 SRA OSS K.K. 15

バックアップ内容

•各地点でのバックアップが取れていることを確認
postgresql.conf の port 番号をずらして各クラスタを起動
$ pg_ctl start -D backup/combine_full_inc1/
$ psql –p 5433
postgres=# ¥d

リレーション一覧
 スキーマ | 名前 | タイプ | 所有者
----------+-------------+----------+----------
public | full_backup | テーブル | postgres
public | inc1 | テーブル | postgres

$ pg_ctl start -D backup/combine_full_inc2/
$ psql –p 5434
postgres=# ¥d

リレーション一覧
 スキーマ | 名前 | タイプ | 所有者
----------+-------------+----------+----------
public | full_backup | テーブル | postgres
public | inc1 | テーブル | postgres
public | inc2 | テーブル | postgres

© 2025 SRA OSS K.K. 16

ディレクトリサイズと実行時間

• フルバックアップに比べてサイズは小さい

•実行時間もフルバックアップに比べて短い

$ du -h --max-depth=1 backup/
888M backup/full
6M backup/inc1
4M backup/inc2

1000 行持つ inc3 テーブル作成後に実施
実行されているファイルサイズが小さく完了している
$ time pg_basebackup -D backup/inc_3 --incremental=backup/inc_2backup_manifest -c fast -P
4045/888986 kB (100%), 1/1 テーブル空間

real 0m4.391s
$ time pg_basebackup -D backup/full_3 -c fast -P
888986/888986 kB (100%), 1/1 テーブル空間
real 0m32.777s

© 2025 SRA OSS K.K. 17

増分バックアップ利用時の注意点①

• summarize_walをonにすること(デフォルトで off)
• $PGDATA/pg_wal/summaries/ 以下のファイルが作成されるようになる

• wal_level を replica 以上とすること
• summarize_wal が on の時は wal_level を replica 以上が必須

summarize_wal を on にしてテーブル作成
postgres=# create table summary_test(i int);
CREATE TABLE

サマリファイルが作成される
$ ls -l data/pg_wal/summaries/
合計 8
-rw-------. 1 postgres postgres 480 10月 21 14:07
000000010000000010000060000000001001B0E8.summary

summarize_wal が off で取得したフルバックアップを対象とするとエラー
$ pg_basebackup --incremental=backup/fullbackup_manifest -D backup/inc1
pg_basebackup: エラー: ベースバックアップを開始できませんでした:
ERROR: WAL集約が有効でなければ差分バックアップは取得できません

© 2025 SRA OSS K.K. 18

増分バックアップ利用時の注意点②

• wal_summary_keep_timeを増分バックアップ取得間隔より長くすること
• summary ファイルを保存する期間を制御するパラメータ

• この期間を過ぎると増分バックアップは失敗する

#wal_summary_keep_time = ‘1d’ として 1 日ごとに古い summary を削除するよう設定
$ ls –l data/pg_wal/summaries/
-rw-------. 1 postgres postgres 32 10月 30 16:52
0000000100000001CF00002800000001D0000028.summary

2 日開けて増分バックアップを取得しようとすると失敗
$ pg_basebackup -D backup/inc_1 --incremental=backup/fullbackup_manifest -P -c fast
pg_basebackup: エラー: ベースバックアップを開始できませんでした:
ERROR: WAL集計がタイムライン1上の1/CD000060から1/CF000028まで必要ですが、そのタイムラ
イン上のそのLSN範囲での集計は不完全です

DETAIL: この範囲で集計されていない最初のLSNは1/CD000060です。

© 2025 SRA OSS K.K. 19

増分バックアップ利用時の注意点③

• フルバックアップ～最新増分バックアップはすべて保管すること
• pg_combinebackup 時にフルバックアップと
初回増分バックアップ～指定したい時点までの増分バックアップが
すべてないとエラー

最初の引数にフルバックアップを指定せずに実行
$ pg_combinebackup -o backup/combine_test backup/inc1 backup/inc2
pg_combinebackup: エラー: “backup/inc1"のバックアップは差分バックアップですが、最初のバックアップ
はフルバックアップである必要があります

backup/inc_1 を引数に渡さず実行
LSN 位置に飛びが見られエラーとなる
$ pg_combinebackup -o backup/combine_1 backup/full/ backup/inc_2
pg_combinebackup: エラー: “backup/full/"のバックアップはLSN 1/1A000060で始まっていますが、
1/1C000028を期待していました

© 2025 SRA OSS K.K. 20

増分バックアップ利用時の注意点④

•統合したバックアップを作成してから古いバックアップを削除する
• (従来)定期的にフルバックアップを取得しそれ以前のバックアップを削除

• pg_combinebackup を実行してそれ以前のバックアップを削除する
• pg_combinebackup したバックアップはフルバックアップとして利用可能

• 統合後も pg_verifybackup で検証することを忘れずに

combine_full_inc1 が full ~ inc_1 まで統合したバックアップ
$ ls -l backup/
合計 16
drwx------. 20 postgres postgres 4096 10月 21 16:44 combine_full_inc1
drwx------. 20 postgres postgres 4096 10月 21 16:43 full
drwx------. 20 postgres postgres 4096 10月 21 16:43 inc_1
drwx------. 20 postgres postgres 4096 10月 21 16:44 inc_2

pg_combinebackup したらそれ以前のバックアップは削除してよい
$ pg_combinebackup -o backup/combine_full_inc2 backup/combine_full_inc1/ backup/inc_2

$ pg_verifybackup backup/combine_full_inc2
バックアップが正常に検証されました

© 2025 SRA OSS K.K. 21

pg_combinebackup オプション①

•高速化オプション

• 注意: --copy-file-range, --clone は入出力ファイルが
同一ファイルシステムである必要有

© 2025 SRA OSS K.K. 22

オプション 説明 環境 メリット

--copy デフォルト
ファイルをコピー

--copy-file-range copy_file_rangeを利用した
ファイル部分コピー

FreeBSDか
カーネル4.5+の Linux

カーネル空間で
完結するため高速

--clone Reflink機能での
ファイルクローンコピー

カーネル 4.5+の
Btrfs、Reflinkが有効なXFS
macOS の APFS

Inodeと
ブロックマップ
コピーのみのため高速

$ pg_combinebackup -o /mnt2/combine_1 /mnt1/full/ /mn1/inc_1 --clone

pg_combinebackup: エラー: "/mnt1/inc_1/pg_wal/0000000100000001000000B9"の
"mnt2/combine3/pg_wal/0000000100000001000000B9"へのファイル範囲のコピー中のエラー:
無効なクロスデバイスリンクです

pg_combinebackup オプション②
• バックアップ統合対象のオプション(-N, --no-sync は無効である必要有)

• --syncfs はファイルシステムに他アプリの書き込みがあるときは注意
• PostgreSQL 以外の書き込みもバックアップに含まれてしまう

• -N, --no-sync: ディスク書き込み前にオペレーションを返す
• 処理は早いが同期中にクラッシュするとデータを失う恐れがある

• -k, --link オプション(v18 以降)
• コピーはせずハードリンクを作成する
• 実コピーが伴わないため高速

© 2025 SRA OSS K.K. 23

オプション バックアップ統合の対象 メリット

--fsync デフォルト
バックアップディレクトリ内全ファイル

最小限の
バックアップで済む

--plain WALファイルと
テーブル空間全体の
シンボリックリンクまで

左記を
バックアップに含められる

--syncfs バックアップディレクトリを含む
ファイルシステム全体

ファイル一つ一つを
開かないため統合が早い

リストア手順

© 2025 SRA OSS K.K. 24

その前にPostgreSQLのデータ保存の仕組みをおさらい

• データの変更内容はストレージではなくメモリに書き込む
• ストレージに書き込む処理は高価であるため

→同期前に障害が起きるとメモリの変更内容が消えてしまう

→メモリ内容が消えてもデータを損失しない仕組みが必要

© 2025 SRA OSS K.K. 25

WALファイル

• メモリに書き込む前にWALファイルへ保存
• 障害が起きたらWALファイルの変更内容を読んで復旧

© 2025 SRA OSS K.K. 26

Point In Time Recovery

• フルバックアップとWALファイルのアーカイブログを掛け合わせて
任意の時点の状態に復旧できる仕組み

© 2025 SRA OSS K.K. 27

PITR と増分バックアップの違い

• PITR に必要なもの
• フルバックアップ

• WALアーカイブログ
• フルバックアップとリカバリしたい地点までの WAL を適用してリストア

•増分バックアップに必要なもの
• フルバックアップ

• 初回フルバックアップからの増分バックアップファイル
• フルバックアップ～任意の時点までの増分ファイルを統合してリストア

• WALを管理したい場合は別途設定が必要

© 2025 SRA OSS K.K. 28

PITR と増分バックアップは両立可

• PITR と 増分バックアップの両立
• archive_mode, archive_command を設定して

WALアーカイブログを補完する仕組みを設ければよい

• メリット
• 増分バックアップタイミング以外へ任意の時刻にリカバリできる

• PITR 機能の強み

• PITRのみよりリカバリ時間を短縮できる
• 増分バックアップの強み
フルバックアップ～増分バックアップによる高速なリストア

© 2025 SRA OSS K.K. 29

増分バックアップにおけるPITR設定

•バックアップ元のPGDATAで postgresql.conf を設定

•増分バックアップを取得

#wal をアーカイブする設定
#%p は保管するWALファイルの相対パス, %f がWALのファイル名に置き換わる
archive_mode = on
archive_command = ‘cp “%p” “/pg_arc/%f”’

#restore を行う設定
restore_command = ‘cp “/pg_arc/%f” “%p” ’

フルバックアップ～バックアップの取得・統合、検証まで実施
$ pg_basebackup -D backup/full
$ pg_basebackup --incremental=backup/fullbackup_manifest -D backup/inc1
$ pg_combinebackup -o backup/combine_full_inc1 backup/full/ backup/inc1
$ pg_verifybackup backup/combine_full_inc1

© 2025 SRA OSS K.K. 30

障害から復旧

•従来の PITR と同様に復旧可能

データを移動して障害を疑似的に起こす
$ mv data data_crash

統合したバックアップを元ディレクトリにコピー
$ cp –r databackup/combine_full_inc1 data

リカバリモードで起動するよう指示するrecovery.signal を作成して起動
$ touch data/recovery.signal

必要に応じて postgresql.conf を設定し復旧タイミングを指定
recovery_target_time = ‘2025-10-20 14:05:00'

$ pg_ctl start

ログに以下が出力されていれば復旧完了
LOG: starting archive recovery
LOG: archive recovery complete

© 2025 SRA OSS K.K. 31

まとめ

© 2025 SRA OSS K.K. 32

実行例

【実行例】

•バックアップ設計
• 例:週一回のバックアップの統合＋毎日の増分バックアップ

• PITR も利用してより子細なタイミングへのリストアを可能に

•バックアップ取得の自動化
• 初回フルバックアップ以降の増分バックアップを自動化

• cronやsystemdタイマー等で
pg_basebackup --incremental コマンドを定期実行

• リストア検証
• 例:月一回は実際にリストアテストを実施

• pg_combinebackupとpg_verifybackupで検証

© 2025 SRA OSS K.K. 33

増分バックアップのメリットと注意点

• メリット
• ストレージコストの削減
• バックアップ・リストア時間の短縮
• 運用負荷の軽減

•注意点
• summarize_wal , wal_keep_timeの有効化

archive_mode の replica 以上等の設定
• pg_verifybackup による定期検証
• 増分バックアップの保管

• pg_combinebackup した以前のバックアップのみ削除するようにする

• 統合バックアップ・古いバックアップ両方を
保存できるストレージサイズが必要
• 統合直後は一時的に古いバックアップもストレージに残る

© 2025 SRA OSS K.K. 34

会社紹介

© 2025 SRA OSS K.K. 35

株式会社SRA OSS
所 在 地: 東京都豊島区南池袋2-32-8

設 立 日: 2022年6月17日

株 主: 株式会社SRA

 株式会社NTTデータ

資 本 金: 7,000万円

社 長: 稲葉 香理

事業内容
• オープンソースソフトウェア (OSS) 関連の

サポート、製品開発・販売、構築・コンサル

• OSSの教育、開発、コミュニティ運営支援

• ソフトウェアの研究開発

顧 問: 石井達夫

技術顧問: 増永 良文 (お茶の水女子大学名誉教授)

1999 2003 2005 202220142011 2012

PostgreSQL
サポート開始

PowerGres
販売開始

SRA OSS, Inc.
設立

OSSプロフェッショナル
サポート開始

Zabbix
サポート開始

Pgpool-II単体
サポート開始

SRA OSS合同会社
設立

2024

株式会社SRA OSS

に組織変更

36© 2025 SRA OSS K.K.

ご清聴ありがとうございました。

	スライド 1: PostgreSQL 17 増分バックアップの実践活用と 運用上の考慮点
	スライド 2: 自己紹介
	スライド 3: 目次
	スライド 4: PostgreSQLの 増分バックアップの有用性
	スライド 5: PostgreSQLのバックアップ方法の種類
	スライド 6: フルバックアップと増分バックアップ
	スライド 7: フルバックアップ vs 増分バックアップ
	スライド 8: PostgreSQL 標準機能による 増分バックアップ手順
	スライド 9: PostgreSQL17の新機能
	スライド 10: pg_basebackup による増分バックアップ
	スライド 11: フルバックアップ取得前のテーブル状態
	スライド 12: pg_basebackup による増分バックアップ
	スライド 13: pg_basebackup による増分バックアップ
	スライド 14: 増分バックアップの base ディレクトリ
	スライド 15: 増分バックアップの統合とリストア
	スライド 16: バックアップ内容
	スライド 17: ディレクトリサイズと実行時間
	スライド 18: 増分バックアップ利用時の注意点①
	スライド 19: 増分バックアップ利用時の注意点②
	スライド 20: 増分バックアップ利用時の注意点③
	スライド 21: 増分バックアップ利用時の注意点④
	スライド 22: pg_combinebackup オプション①
	スライド 23: pg_combinebackup オプション②
	スライド 24: リストア手順
	スライド 25: その前にPostgreSQLのデータ保存の仕組みをおさらい
	スライド 26: WALファイル
	スライド 27: Point In Time Recovery
	スライド 28: PITR と増分バックアップの違い
	スライド 29: PITR と増分バックアップは両立可
	スライド 30: 増分バックアップにおけるPITR設定
	スライド 31: 障害から復旧
	スライド 32: まとめ
	スライド 33: 実行例
	スライド 34: 増分バックアップのメリットと注意点
	スライド 35: 会社紹介
	スライド 36: ご清聴ありがとうございました。

