
Change Data Capture入門:

DebeziumでPostgreSQLのデータ

を解放しよう！

株式会社SRA OSS

© 2025 SRA OSS K.K. 1

会社紹介
株式会社SRA OSS

所 在 地: 東京都豊島区南池袋2-32-8

設 立 日: 2022年6月17日

株 主: 株式会社SRA

 株式会社NTTデータ

資 本 金: 7,000万円

社 長: 稲葉 香理

事業内容

• オープンソースソフトウェア (OSS) 関連の
サポート、製品開発・販売、構築・コンサル

• OSSの教育、開発、コミュニティ運営支援

• ソフトウェアの研究開発

顧 問: 石井 達夫

技術顧問: 増永 良文 (お茶の水女子大学名誉教授)

2

1999 2003 2005 202220142011 2012

PostgreSQL
サポート開始

PowerGres
販売開始

SRA OSS, Inc.
設立

OSSプロフェッショナル
サポート開始

Zabbix
サポート開始

Pgpool-II単体
サポート開始

SRA OSS合同会社
設立

2024

株式会社SRA OSS

に組織変更

© 2025 SRA OSS K.K.

自己紹介

© 2025 SRA OSS K.K. 3

 鳥越 淳
• SRA OSS OSS事業本部 データベース技術グループ所属

• PostgreSQLのサポート、案件支援などに従事

• PostgreSQL Contributor。主にモニタリング周りの機能開発に従事

 馬 雪テイ
• システムインフラ開発室所属

• PostgreSQLサポート

• PostgreSQL HAクラスタ構築・コンサルティング

• 社内システム開発

目次

• CDC入門

•Debezium入門

•Debezium利用時のPostgreSQLからKafkaへのデータ
の流れ

•アーキテクチャなどから考えるDebeziumの注意点

© 2025 SRA OSS K.K. 4

CDC入門

© 2025 SRA OSS K.K. 5

こんな要望はありませんか？

© 2025 SRA OSS K.K. 6

[リアルタイム性を活かしたい]

• リアルタイム性の高いデータを利用した業務に取り組みたいが、既存DB
に業務処理を追加するのは、性能影響からNG

• DB間の連携はファイルなどを介して日次バッチ処理などで実施していた
が、古いデータではお客様の要望を満たせなくなりつつある

既存DB

高リアルタイム
業務×

追加

既存DB 業務DB・2

日次バッチ

鮮度低

こんな要望はありませんか？

© 2025 SRA OSS K.K. 7

[既存システムのオフロードをしたい]

• OLTP/OLAP系クエリの両方を既存DB上で実施していたが、データの蓄積
などとともに過負荷状態に。別のDBへオフロードが必要(既存システムの
オフロード)

[複数データストアを連携したい]

• 既存のDBがいろいろある。サイロ化したデータストアから、分析に必要
なデータを抽出するのが困難

既存DB

OLTPクエリ OLAPクエリ

既存Oracle
既存

SQLServer
既存DB2

身の回りにこんな要望はありませんか？

© 2025 SRA OSS K.K. 8

[既存システムのオフロードをしたい]

• OLTP/OLAP系クエリの両方を既存DB上で実施していたが、データの蓄積
などとともに過負荷状態に。別のDBへオフロードが必要(既存システムの
オフロード)

[複数データストアを連携したい]

• 既存のDBがいろいろある。サイロ化したデータストアから、分析に必要
なデータを抽出するのが困難

既存DB

OLTPクエリ OLAPクエリ

既存Oracle
既存

SQLServer
既存DB2

その要望、
CDCで叶えられるかもしれません

CDCとは

• Change Data Capture。データベースへの変更を観察し、他
のシステムへレプリケーションできる形態で取り出すプロセス
• 例えば、PostgreSQLへの更新内容を取り出し、分析用途で

Elasticsearchに投入

• 同期速度も比較的高速であることを謳う製品が一般的
• 〇数秒オーダー以下, ×日次バッチ

• レプリケーションとの違い
• PostgreSQL本体に備わる物理/論理レプリケーションは、送信元・送

信先いずれもPostgreSQL

• 一方、CDCでは送信元がPostgreSQLでも、送信先は様々

© 2025 SRA OSS K.K. 9

CDC実現後のイメージ

[リアルタイム性を活かした業務]

• データを新DBへ同期し、新DBにてリアルタイムな業務を実施

• 日次バッチ処理をCDCに置換、高鮮度のデータで業務を実施

© 2025 SRA OSS K.K. 10

既存DB 新DB

リアルタイム連携

高リアルタイム
業務

業務A DB 業務B DB

鮮度高

リアルタイム連携

CDC実現後のイメージ

[既存システムのオフロード]

• OLAP用DBを構築。OLTPに不要な古いデータは既存DBから削除

• 削除はレプリケーションしないことで、OLAP用DBには古いデータも蓄積
することも可能

[マルチデータストアの連携]

• 分析に必要なデータを各DBから抽出

11

既存DB

OLTPクエリ OLAPクエリ

OLAP用DB

削除はレプリ
ケーションしない

既存Oracle
既存

SQLServer
既存DB2

新業務DB
必要なデータのみ
レプリケーション

© 2025 SRA OSS K.K.

CDCの実現方法

ソースDBから変更データを取り出す方法は大きく2種類:

 トランザクションログベース: トランザクションログの内容をデコードし、
変更内容を論理的に抽出、他DBへレプリケーション

 Triggerベース: DBへの変更を監視するトリガーを利用。たとえば変更内
容を更新ログテーブルに追加・定期的に更新ログテーブルの内容を同期先
へ反映

12

ソースDB

WAL

decode

ターゲットDB
論理的な変更内容を抽
出し、ターゲットDBに
適用可能な形に変換

apply

ソースDB

テー
ブル

trigger

ターゲットDB
DBへの変更を検知、変
更内容をターゲットDB
に適用

apply

© 2025 SRA OSS K.K.

CDCの実現方法

ソースDBから変更データを取り出す方法は大きく2種類:

 トランザクションログベース: トランザクションログの内容をデコードし、
変更内容を論理的に抽出、他DBへレプリケーション

 Triggerベース: DBへの変更を監視するトリガーを利用。たとえば変更内
容を更新ログテーブルに追加・定期的に更新ログテーブルの内容を同期先
へ反映

13

ソースDB

WAL

decode

ターゲットDB
論理的な変更内容を抽
出し、ターゲットDBに
適用可能な形に変換

apply

ソースDB

テー
ブル

trigger

ターゲットDB
DBへの変更を検知、変
更内容をターゲットDB
に適用

apply

Debezium入門

© 2025 SRA OSS K.K. 14

Debeziumの概要

• オープンソースのCDCプラットフォーム

• MySQL, PostgreSQL, SQL Server, MongoDBなど各種DBのCDCに対応

• Apache License 2.0

• 主な開発元はRed Hat。Commonhaus Foundationに参加

• 基本的にApache Kafkaと連携してCDCを実現

© 2025 SRA OSS K.K. 15

https://debezium.io/documentation/reference/stable/architecture.html

Debeziumの概要

• さまざまなDBと連携可能。以下バージョン3.3のsource connector一覧:
• MySQL

• MariaDB

• MongoDB

• PostgreSQL

• Oracle

• SQL Server

• DB2

• Cassandra

• Vitess

• Spanner

• Informix

© 2025 SRA OSS K.K. 16

Kafkaの概要

• オープンソースの分散メッセージングシステム

• あるシステムから送信されるメッセージを受け取り、別のシステムに渡す
のが基本的な仕事

• 複数ノードで分散処理できスケーラブル、送達保証可能などの特徴

© 2025 SRA OSS K.K. 17

https://www.wantedly.com/companies/sraoss/post_articles/974841

メッセージ
の送信元

メッセージを
受信/配信

メッセージ
の取得元

メッセージの入れ物。
RDB連携ではテーブルと
1:1に紐づけるのが典型的

Kafkaの概要

• 大量のメッセージを処理可能にするため、broker上の読み書きはパー
ティションという単位に分割し分散処理

© 2025 SRA OSS K.K. 18

Broker 1

Topic A

partition

partition

partition

Topic B

partition

partition

partition

Broker 2

Topic A

partition

partition

partition

Topic B

partition

partition

partition

producer
consumer

Broker 3

Topic A

partition

partition

partition

Topic B

partition

partition

partition

1つのtopicの処
理を複数broker
に分散処理

Kafka Connectの概要

© 2025 SRA OSS K.K. 19

• Kafkaと他システム(例えばDB)のデータ連携に

利用するフレームワーク

• Kafka Connectと連携先ごとのプラグインを利用。例. PostgreSQLから
データを取得するプラグイン

• DebeziumはKafka Connectorのプラグインの集合

• source connectorとsink connectorがある

DebeziumによるPostgreSQLからのデータ取得

• DebeziumはPostgreSQLのロジカルデコーディング機能を利用して

変更内容（INSERT／UPDATE／DELETEなど）を取得する。

• ロジカルデコーディングとは

- WALに記録された DB 変更内容を PostgreSQL 外でも読める形式に変換して出力する仕組み

 - 出力形式は使用するoutput pluginによって選択。Debeziumでは以下の2種類が利用可能

• pgoutput（PostgreSQL 標準／論理レプリケーション用）

• decoderbufs（Debezium 独自）

- 本資料では以降 pgoutput前提で説明

© 2025 SRA OSS K.K. 20

Debezium 利用時のPostgreSQLからKafka
へのデータの流れ

© 2025 SRA OSS K.K. 21

[PostgreSQL 内部処理]
└─ 論理レプリケーションを開始

 ↓
 トランザクション単位で変更を並べ替え
 ↓

publication設定に基づいて論理メッセージを生成

CDC アーキテクチャの全体像

© 2025 SRA OSS K.K. 22

PostgreSQL

Topic

Partition

Partition

Partition

Partition

Partition

Partition

Broker

Broker

Broker

Source Connector

logical
decoding produce

Customer
[Kafka Streams /
Sink Connector]

下流アプリケーションへ

……

変換処理（任意）

Converter
（Json化）

PostgreSQLでのデータ処理

© 2025 SRA OSS K.K. 23

ソースPostgreSQL

walsender

WAL

1. WAL読込

pgoutputの
callback群
begin_cb

change_cb

..

INSERT..

DELETE..

INSERT..

UPDATE..

INSERT..

ReorderBuffer。

更新内容をトランザク
ションごとに管理

outputプラグイン。ここでは
pgoutput

ロジカルデコーディングを実施。pgoutputを利用するので、PostgreSQL
本体の論理レプリケーションと同じ処理となる。以下既存トランザクショ
ンに１件UPDATE・COMMIT実施した例:

PostgreSQLでのデータ処理

© 2025 SRA OSS K.K. 24

ソースPostgreSQL

walsender

WAL

pgoutputの
callback群
begin_cb

change_cb

..

INSERT..

UPDATE..

DELETE..

INSERT..

UPDATE..

INSERT..

2. デコードし、トランザ
クション単位で管理

ReorderBuffer。

更新内容をトランザク
ションごとに管理

outputプラグイン。ここでは
pgoutput

ロジカルデコーディングを実施。pgoutputを利用するので、PostgreSQL
本体の論理レプリケーションと同じ処理となる。以下既存トランザクショ
ンに１件UPDATE・COMMIT実施した例:

PostgreSQLでのデータ処理

ロジカルデコーディングを実施。pgoutputを利用するので、PostgreSQL
本体の論理レプリケーションと同じ処理となる。以下既存トランザクショ
ンに１件UPDATE・COMMIT実施した例:

© 2025 SRA OSS K.K. 25

ソースPostgreSQL

walsender

WAL

pgoutputの
callback群
begin_cb

change_cb

..

INSERT..

UPDATE..

DELETE..

INSERT..

UPDATE..

INSERT..

3. COMMITされると、各
種コールバック関数が実
行され、下流へ送信

Debezium PG Connectorのアーキテクチャ

[PostgreSQL]

│ (デコードした変更イベントを送信)

▼

[Debezium PostgreSQL Connector]

├─ 変更イベントを読み取る

 ├─ 変更イベント（before/after/op/source などの) オブジェクト生成

 ├─ Converter（JSON / Avro へシリアライズ）

 └─ Kafka Topic に produce（書き込み）

© 2025 SRA OSS K.K. 26

PostgreSQL

Debezium PG
Connector

Kafka

INSERT / UPDATE / DELETE のイベント

© 2025 SRA OSS K.K. 27

INSERT（op=c）
アプリが INSERT を実行すると、PostgreSQL はその変更を WAL に記録。
pgoutput プラグインが 行データを論理メッセージ化 し、
Debezium がそれを受け取って JSON 形式に変換 → Kafka に送信

INSERT INTO customers (id, first_name, last_name, email)
VALUES (4, 'Debe', 'Test', 'd@example.com');

Key:
{"id": 4}

Value:
{
"before": null,
"after": {"id": 4, "first_name": "Debe", "last_name": "Test", "email":

"d@example.com"},
"op": "c",
"source": {"db": "inventory", "schema": "public", "table": "customers", "lsn":

27013880, "txId": 1069},
"ts_ms": 1760601142773

}

© 2025 SRA OSS K.K. 28

1件INSERT / UPDATE / DELETEの流れ

UPDATE（op=u）
UPDATEはbeforeとafter。Keyは必須。

UPDATE customers SET last_name = ‘Updated’ WHERE id = 4;

Key:
{"id": 4}

Value:
{
"before": {"id": 4, "first_name": "Debe", "last_name": "Test", "email":

"d@example.com"},
"after": {"id": 4, "first_name": "Debe", "last_name": "Updated",

"email": "d@example.com"},
"op": "u",
"source": {"db": "inventory", "schema": "public", "table": "customers",

"lsn": 27013912, "txId": 1071},
"ts_ms": 1760601144801

}

© 2025 SRA OSS K.K. 29

1件INSERT / UPDATE / DELETEの流れ

DELETE（op=d）
DELETEはafter:null、op:d。キーで削除を表現。

DELETE FROM customers WHERE id = 4;

Key:
{"id": 4}

Value:
{
"before": {"id": 4, "first_name": "Debe", "last_name":

"Updated", "email": "d@example.com"},
"after": null,
"op": "d",
"source": {"db": "inventory", "schema": "public", "table":

"customers", "lsn": 27013944, "txId": 1072},
"ts_ms": 1760601145902

}

初期同期スナップショット

概要：

• 初回起動時に、対象テーブルの既存データを整合性の取れた状態で一括取
得する

仕組み：

• CDC対象のテーブルの全行を取得するSELECTクエリを実行して取得する

• このSELECTクエリと同時並行で進む書き込みはWALに記録されるので、
スナップショット完了後にWALから追いかけて整合性を保つ

初期同期スナップショット完了後は これまでに説明した通常のCDCに移行

© 2025 SRA OSS K.K. 30

初期同期スナップショット

© 2025 SRA OSS K.K. 31

初期同期イベント（op=r）

{
"before": null,
"after": { "id": 1, "first_name": "Sally", "last_name": "Thomas", "email":

"sally.thomas@example.com" },
"op": "r",

 "source": {
"version": "3.2.3.Final",
"connector": "postgresql",
"name": "dbserver1",
"snapshot": "first",
"db": "inventory",
"schema": "public",
"table": "customers"

},
"ts_ms": 1759731208613

}

snapshot read event

初回スナップショットであること
を示す。以降、スナップショット
完了までは "true" が表示される。

アーキテクチャなどから考える
Debeziumの注意点

© 2025 SRA OSS K.K. 32

アーキテクチャなどから考えるDebeziumの注意点

① PostgreSQL論理デコードの制約とDebeziumの関係(1)

- DDL（CREATE / ALTER TABLE など）はCDC対象外

 → DDLのレプリケーションにはDebezium以外の仕組みが必要

- WALデコードは対象のDBクラスタのWAL全てに実施される

 → CDC対象外のDBについてWALや、publication対象外のテーブルについ
てのWALもデコードされる

→ CDC接続が増えるほど、WALデコードの処理負荷が増加

 → CDC対象の変更量が少なくても、DBクラスタのワークロードによっては
デコードの負荷が大きい可能性あり

© 2025 SRA OSS K.K. 33

アーキテクチャなどから考えるDebeziumの注意点

① PostgreSQL論理デコードの制約とDebeziumの関係(2)

- PostgreSQLのREPLICA IDENTITYは、論理デコードで「どの列をキーとし
て行を識別するか」を決める

→ REPLICA IDENTITYがDEFAULTのまま、かつ主キーや一意キーがないテー
ブルでは、UPDATE／DELETE 時にbefore値（旧値）を取得できないため、
UPDATE・DELETEがエラーとなる

対策：

 → 主キーまたは一意キーを設定する

 → REPLICA IDENTITYにFULLを指定して全列を出力。（※性能への影響が
大きくなる可能性あり）

© 2025 SRA OSS K.K. 34

アーキテクチャなどから考えるDebeziumの注意点

① PostgreSQL論理デコードの制約とDebeziumの関係(3)

- 生成列の対応状況

 → 生成列（generated column） とは、他の列の値を使って自動的に計算される列のこと。

 → 構文例

total numeric GENERATED ALWAYS AS (price * qty) STORED

total numeric GENERATED ALWAYS AS (price * qty) VIRTUAL

 → 生成列（STORED型）を含むテーブルをCDCの対象にしたい場合は、PostgreSQL 18以
降を利用する

© 2025 SRA OSS K.K. 35

PostgreSQLバージョン 生成列サポート 論理デコード 備考

12 - 17 STORED型 対象外 Debeziumでは取得不可

18 STORED型、VIRTUAL型 STORED型の
み可能

STORED型はDebeziumで
値を参照可能

※計算結果をテーブルに保存

※SELECT時に計算して返す

アーキテクチャなどから考えるDebeziumの注意点

② commit 単位でまとめて送信

- Debezium利用時PostgreSQL側はトランザクションの COMMIT 時にイベントを送信

 → 大きなトランザクション（例：1トランザクションで数十万件更新／削除）があると、
Kafkaへの反映が遅延する可能性がある。

- PostgreSQL 14に導入された実行中の大規模トランザクションをストリームする仕組み(トラ

ンザクション完了を待たずに、途中の変更データを逐次送信する機能)は Debezium ではサ

ポートしていない

© 2025 SRA OSS K.K. 36

db=# SELECT slot_name, spill_txns, spill_bytes, stream_txns, stream_bytes, total_txns, total_bytes
 FROM pg_stat_replication_slots WHERE slot_name='debezium_slot';"
 slot_name | spill_txns | spill_bytes | stream_txns | stream_bytes | total_txns | total_bytes
---------------+------------+-------------+-------------+--------------+------------+-------------
 debezium_slot | 1 | 135200000 | 0 | 0 | 91 | 274706394
(1 row)

③ Debezium × Kafka における「1トピック1パーティション」問題

- 1テーブル = 1トピック

 → トピック名の形式：<serverName>.<schemaName>.<tableName>

→ デフォルト動作だが、変更は可能

- 各トピックはデフォルトでパーティション数 = 1

→ Kafkaは「同一パーティション内」のみで順序を保証する

 → 複数パーティション化すると、同じ行の更新順序が崩れる可能性がある

- Kafka 側でパーティション数を増やすことは可能だが、順序保証が崩れる
ため推奨されない

© 2025 SRA OSS K.K. 37

アーキテクチャなどから考えるDebeziumの注意点

③ Debezium × Kafka における「1トピック1パーティション」問題

© 2025 SRA OSS K.K. 38

アーキテクチャなどから考えるDebeziumの注意点

単一パーティション

[Topic: dbserver1.public.customers]
Partition 0
──────────────────────────────
① INSERT id=1 （新規登録）
② UPDATE id=1 （住所変更）
③ DELETE id=1 （削除）

──────────────────────────────
Consumer側：同じ順で処理

複数パーティション
Producer送信順：
① INSERT id=1
② UPDATE id=1
③ DELETE id=1

Kafkaの分配：

Partition 0 ← INSERT(id=1), DELETE(id=1)
Partition 1 ← UPDATE(id=1)

Consumer受信順：

INSERT → DELETE → UPDATE
1トランザクション内の複数操作
（INSERT→UPDATE→DELETE）は、
順序が保たれる Consumer 側では順序が変わる可能性が

ある。例えば、削除済みデータを更新
することが発生するかも

アーキテクチャなどから考えるDebeziumの注意点

④ 文字コードがUTF-8以外だと Debezium がエラー発生

Debezium は PostgreSQL側の文字コードはUTF-8のみサポート

JDBC 経由で UTF-8 セッションでスナップショット SELECT を行うため、そ
の時点で DB 側の文字コード変換が失敗 → スナップショットが失敗し、リト
ライを繰り返しCDCできない

Caused by: org.postgresql.util.PSQLException: ERROR: invalid byte sequence for encoding
"UTF8": 0x80

© 2025 SRA OSS K.K. 39

まとめ

• CDCによって、異種間データベースのレプリケーションが可能

• DebeziumはオープンソースのCDC基盤。基本的にApache
Kafkaを利用

• Debezium PostgreSQL source connectorは、PostgreSQLの
論理デコードを利用してDBへの変更を取得

• CDCは機能制約に注意が必要。Debezium PostgreSQL
source connectorについていくつかご紹介。利用する環境・
ワークロード上問題となる要因がないか要確認

© 2025 SRA OSS K.K. 40

参考

• Kleppmann, M. 著; 斉藤太郎 監訳; 玉川竜司 訳. 『データ指向アプリ
ケーションデザイン ‒ 信頼性、拡張性、保守性の高い分散システム設計の
原理』. O’Reilly Japan, 2019. ISBN 978-4-87311-870-3

• Debezium Documentation

https://debezium.io/documentation/reference/3.3/

• PostgreSQL Documentation

https://www.postgresql.org/docs/devel/logicaldecoding.html

• 速習！論理レプリケーション@PostgreSQL Conference Japan 2022

https://www.slideshare.net/slideshow/postgresql-logical-
replication-postgresql-conference-japan-2022-nttdata/254219341

© 2025 SRA OSS K.K. 41

https://debezium.io/documentation/reference/3.3/
https://www.postgresql.org/docs/devel/logicaldecoding.html
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341
https://www.slideshare.net/slideshow/postgresql-logical-replication-postgresql-conference-japan-2022-nttdata/254219341

42

ご清聴ありがとうございました。

製品・サービスに関するお問い合わせ: 03-5979-2701sales@sraoss.co.jp

© 2025 SRA OSS K.K.

mailto:sales@sraoss.co.jp

	既定のセクション
	スライド 1: Change Data Capture入門: DebeziumでPostgreSQLのデータ を解放しよう！
	スライド 2: 会社紹介
	スライド 3: 自己紹介
	スライド 4: 目次
	スライド 5
	スライド 6: こんな要望はありませんか？
	スライド 7: こんな要望はありませんか？
	スライド 8: 身の回りにこんな要望はありませんか？
	スライド 9: CDCとは
	スライド 10: CDC実現後のイメージ
	スライド 11: CDC実現後のイメージ
	スライド 12: CDCの実現方法
	スライド 13: CDCの実現方法
	スライド 14
	スライド 15: Debeziumの概要
	スライド 16: Debeziumの概要
	スライド 17: Kafkaの概要
	スライド 18: Kafkaの概要
	スライド 19: Kafka Connectの概要
	スライド 20: DebeziumによるPostgreSQLからのデータ取得
	スライド 21
	スライド 22: CDC アーキテクチャの全体像
	スライド 23: PostgreSQLでのデータ処理
	スライド 24: PostgreSQLでのデータ処理
	スライド 25: PostgreSQLでのデータ処理
	スライド 26: Debezium PG Connectorのアーキテクチャ
	スライド 27: INSERT / UPDATE / DELETE のイベント
	スライド 28: 1件INSERT / UPDATE / DELETEの流れ
	スライド 29: 1件INSERT / UPDATE / DELETEの流れ
	スライド 30: 初期同期スナップショット
	スライド 31: 初期同期スナップショット
	スライド 32
	スライド 33: アーキテクチャなどから考えるDebeziumの注意点
	スライド 34: アーキテクチャなどから考えるDebeziumの注意点
	スライド 35: アーキテクチャなどから考えるDebeziumの注意点
	スライド 36: アーキテクチャなどから考えるDebeziumの注意点
	スライド 37
	スライド 38
	スライド 39: アーキテクチャなどから考えるDebeziumの注意点
	スライド 40: まとめ
	スライド 41: 参考
	スライド 42

