
Implementing Row Pattern
Recognition

SRA OSS LLC

Tatsuo Ishii

2024/05/29
PGConf.dev at

Vancouver Canada

2Copyright(c) 2024 SRA OSS LLC

Who am I?

● Working for SRA OSS LLC as an advisor
● PostgreSQL committer

● Internationalization of PostgreSQL
● pgbench, pgstattuple, pgrowlocks, Pgpool-II (an

external project)

3Copyright(c) 2024 SRA OSS LLC

Today’s talk

● What is Row Pattern Recognition?
● Syntax of Row Pattern Recognition
● Implementation of Row Pattern Recognition

and future plans
● Demonstrations

4Copyright(c) 2024 SRA OSS LLC

What is Row Pattern Recognition (RPR)?
● One of the features defined by the SQL standard

● Allow to search for a sequence of rows (e.g. time series data) by “pattern”
● Pattern definition list

● LOWPRICE AS price < 100
● UP AS price > PREV(price)
● DOWN AS price < PREV(price)

● A pattern can be defined by using pattern variables and regular expressions
● LOWPRICE UP+ DOWN+

● Applications
● Searching for stock price fluctuation patterns
● Detecting anomalous values
● And more

5Copyright(c) 2024 SRA OSS LLC

Row Pattern Recognition:
definition and implementation

● Relatively new feature first appeared in
SQL:2016
● Called “SQL/RPR” in the standard

● Only Oracle has this at present. No OSS
RDBMS has implemented this yet
● Some Analytics tools implement RPR

– https://trino.io/

6Copyright(c) 2024 SRA OSS LLC

RPR example 1：detecting patterns in a time series data

Pattern of rising and then falling

Pattern of falling and then risingPattern of rising

Detail explained later

Time

Value

7Copyright(c) 2024 SRA OSS LLC

Search for patterns of rising and then
falling

 company | tdate | price
----------+------------+-------
 Company1 | 2023-07-01 | 100 START　
 Company1 | 2023-07-02 | 200 UP
 Company1 | 2023-07-03 | 150 DOWN
 Company1 | 2023-07-04 | 140 DOWN
 company1 | 2023-07-05 | 150
 Company1 | 2023-07-06 | 90 START
 Company1 | 2023-07-07 | 110 UP
 Company1 | 2023-07-08 | 130 UP
 Company1 | 2023-07-09 | 120 DOWN
 company1 | 2023-07-10 | 130

Find sequences of rows of rising
once or more and then falling
once or more

START AS TRUE,
UP AS price > PREV(price),
DOWN AS price < PREV(price)

START
UP+
DOWN+

Define “row pattern
variables”

Define sequence
 of patterns using
regular
expressions

Mapped to the first row
Mapped to the second or subsequent rows

Mapped to the third or subsequent rows

Requirement

8Copyright(c) 2024 SRA OSS LLC

Actual query
SELECT company, tdate, price,
first_value(price) OVER w, -- the first row of the frame
last_value(price) OVER w -- the last row of the frame
 FROM stock
 WINDOW w AS (
 PARTITION BY company
 ORDER BY tdate
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
 AFTER MATCH SKIP PAST LAST ROW
 INITIAL
 PATTERN (START UP+ DOWN+) -- define patterns
 DEFINE -- define pattern variables
 START AS TRUE,
 UP AS price > PREV(price),
 DOWN AS price < PREV(price)
);

9Copyright(c) 2024 SRA OSS LLC

The result
 company | tdate | price | first_value | last_value
----------+------------+-------+-------------+------------
 company1 | 2023-07-01 | 100 | 100 | 140
 company1 | 2023-07-02 | 200 | |
 company1 | 2023-07-03 | 150 | |
 company1 | 2023-07-04 | 140 | |
 company1 | 2023-07-05 | 150 | |
 company1 | 2023-07-06 | 90 | 90 | 120
 company1 | 2023-07-07 | 110 | |
 company1 | 2023-07-08 | 130 | |
 company1 | 2023-07-09 | 120 | |
 company1 | 2023-07-10 | 130 | |
(10 rows)

10Copyright(c) 2024 SRA OSS LLC

Example 2：detecting specific consecutive events
 alert_time | alert_msg | first_alert | last_alert
---------------------+------------------------------+---------------------+---------------------
 2023-11-24 09:00:00 | Warning: device is not ready | |
 2023-11-24 09:01:00 | Log: device is busy | |
 2023-11-24 09:02:00 | Log: device is busy | |
 2023-11-24 09:03:00 | Warning: device is not ready | |
 2023-11-24 09:04:00 | Warning: device is not ready | |
 2023-11-24 09:05:00 | Warning: device is not ready | |
 2023-11-24 09:10:00 | Log: device is busy | |
 2023-11-24 09:20:00 | Log: device is busy | |
 2023-11-24 09:21:00 | Warning: device is not ready | 2023-11-24 09:21:00 | 2023-11-24 09:21:20
 2023-11-24 09:21:10 | Warning: device is not ready | |
 2023-11-24 09:21:20 | Warning: device is not ready | |
 2023-11-24 09:22:00 | Log: device is busy | |

Detect events where “Warning”
messages appear consecutively
within 30 seconds more than 3
times

11Copyright(c) 2024 SRA OSS LLC

RPR expression

START AS alert_msg LIKE ‘Warning%’,
WARNING AS alert_msg LIKE
‘Warning%’ AND (alert_time – PREV
(alert_time) < interval ‘30 seconds’

START
WARNING
WARNING+

 alert_time | alert_msg
---------------------+------------------------------
 2023-11-24 09:00:00 | Warning: device is not ready
 2023-11-24 09:01:00 | Log: device is busy
 2023-11-24 09:02:00 | Log: device is busy
 2023-11-24 09:03:00 | Warning: device is not ready
 2023-11-24 09:04:00 | Warning: device is not ready
 2023-11-24 09:05:00 | Warning: device is not ready
 2023-11-24 09:10:00 | Log: device is busy
 2023-11-24 09:20:00 | Log: device is busy
 2023-11-24 09:21:00 | Warning: device is not ready
 2023-11-24 09:21:10 | Warning: device is not ready
 2023-11-24 09:21:20 | Warning: device is not ready
 2023-11-24 09:22:00 | Log: device is busy

Define sequence
 of patterns using
regular
expressions

Three or more consecutive messages
 starting with "Warning" appear
within 30 seconds more than 3 times

Define “row pattern
variable”

12Copyright(c) 2024 SRA OSS LLC

Actual query
SELECT alert_time, alert_msg,
first_value(alert_time) OVER w AS first_alert,
last_value(alert_time) OVER w AS last_alert
 FROM alerts
 WINDOW w AS (
 PARTITION BY device_id
 ORDER BY alert_time
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
 INITIAL
 PATTERN (START WARNING WARNING+)
 DEFINE
 START AS alert_msg LIKE 'Warning%',
 WARNING AS alert_msg LIKE 'Warning%' AND
 (alert_time - PREV(alert_time)) < interval '30 seconds'
);

13Copyright(c) 2024 SRA OSS LLC

 alert_time | alert_msg | first_alert | last_alert
---------------------+------------------------------+---------------------+---------------------
 2023-11-24 09:00:00 | Warning: device is not ready | |
 2023-11-24 09:01:00 | Log: device is busy | |
 2023-11-24 09:02:00 | Log: device is busy | |
 2023-11-24 09:03:00 | Warning: device is not ready | |
 2023-11-24 09:04:00 | Warning: device is not ready | |
 2023-11-24 09:05:00 | Warning: device is not ready | |
 2023-11-24 09:10:00 | Log: device is busy | |
 2023-11-24 09:20:00 | Log: device is busy | |
 2023-11-24 09:21:00 | Warning: device is not ready | 2023-11-24 09:21:00 | 2023-11-24 09:21:20
 2023-11-24 09:21:10 | Warning: device is not ready | |
 2023-11-24 09:21:20 | Warning: device is not ready | |
 2023-11-24 09:22:00 | Log: device is busy | |

The result

14Copyright(c) 2024 SRA OSS LLC

Two different types of RPR

● Actually there are two different RPRs
● R010: Row pattern recognition: FROM clause

– “MATCH_RECOGNIZE” clause after FROM. RPR is defined there
● R020: Row pattern recognition: WINDOW clause

– Define RPR in Window clause
● R010 and R020 have many common definitions.

● Why I wanted to implement RPR in WINDOW clause?
● RPR needs to scan a set of tuples over and over again

– Scanning in FROM clause in the same way is difficult as far as I know
● WINDOW clause already has such an infrastructure
● We could be the first implementer of RPR in WINDOW clause in RDBMSs!

15Copyright(c) 2024 SRA OSS LLC

Example query in R010
SELECT company, tdate, price, m.first_val, m.last_val
FROM stock
MATCH_RECOGNIZE
(
 PARTITION BY company
 ORDER BY tdate
 MEASURES
 FIRST(price) AS first_val,
 LAST(price) AS last_val,
 AFTER MATCH SKIP PAST LAST ROW
 PATTERN (START UP+ DOWN+)
 DEFINE
 START AS TRUE,
 UP AS price > PREV(price),
 DOWN AS price < PREV(price)
) AS m;

16Copyright(c) 2024 SRA OSS LLC

Syntax of RPR
WINDOW window_name AS (
[PARTITION BY ...]
[ORDER BY...]
[MEASURES ...]
ROWS BETWEEN CURRENT ROW AND ...
[AFTER MATCH SKIP ...]
[INITIAL|SEEK]
PATTERN (...)
[SUBSET ...]
DEFINE ...
)

● PARTITION BY, ORDER BY are same as in the Window clause without RPR
● MEASURES and SUBSET are not implemented yet
● Some of sub clauses are not implemented yet

17Copyright(c) 2024 SRA OSS LLC

ROWS BETWEEN
CURRENT ROW...

● Specify the frame’s start and end. Same as
Window clause without RPR except only
below are allowed in RPR
● ROWS BETWEEN CURRENT ROW AND

UNBOUNDED FOLLOWING
● ROWS BETWEEN CURRENT ROW AND n

FOLLOWING

18Copyright(c) 2024 SRA OSS LLC

AFTER MATCH SKIP...
● Only valid with RPR
● Specify where to start the next

pattern matching after the pattern
matching ends
● AFTER MATCH SKIP TO NEXT ROW

– Skip to next row regardless the previous
matching rows

● AFTER MATCH SKIP PAST LAST ROW
– Skip current matching rows and move to

next row
● AFTER MATCH SKIP TO FIRST|LAST

pattern_variable
– Not supported

 company | tdate | price
----------+------------+-------
 company1 | 2023-07-01 | 100
 company1 | 2023-07-02 | 200
 company1 | 2023-07-03 | 150
 company1 | 2023-07-04 | 140
 company1 | 2023-07-05 | 150
 company1 | 2023-07-06 | 90
 company1 | 2023-07-07 | 110
 company1 | 2023-07-08 | 130
 company1 | 2023-07-09 | 120
 company1 | 2023-07-10 | 130

Current match

19Copyright(c) 2024 SRA OSS LLC

INITIAL|SEEK

● Only valid with RPR
● INITIAL

● Pattern match succeeds only when the set of matching rows
starts from the first row of a frame

● The default
● SEEK

● Pattern match succeeds even if the set of matching rows do not
starts from the first row of a frame

● Not supported in the current patches

20Copyright(c) 2024 SRA OSS LLC

DEFINE (1)

● Only valid with RPR
● Define pattern_definition _ist

● DEFINE variable_name AS search_condition, …
– search_condition is a boolean logical expression

● Example pattern definitions
– START AS TRUE
– LOWPRICE AS price < 100
– UP AS price > PREV(price)
– UP AS price > 100 AND price < PREV(price)

21Copyright(c) 2024 SRA OSS LLC

DEFINE (2)

● Row pattern navigation operations can be used in
DEFINE clause
● FIRST, LAST, PREV, NEXT
● Only PREV/NEXT are supported in the current patches

● Following are not supported in the current patch
● CLASSIFIER (function returning the variable name which

matches the pattern)
● Aggregates
● Subqueries

22Copyright(c) 2024 SRA OSS LLC

PATTERN (1)
● Describe the patterns to be matched using

variables in the DEFINE clause
● PATTERN (START UP+ DOWN+)

– Match with START (the first row)
– 1 or more rows matching UP follow
– 1 or more rows matching DOWN follow

● If a variable A which was not defined in DEFINE
clause appears, it is regarded AS “A is TRUE”

23Copyright(c) 2024 SRA OSS LLC

PATTERN(2)

● The standard allows following regular expressions with pattern variable
● +: 1 or more rows
● *: 0 or more rows
● ?: 0 or 1 row
● A | B: OR condition
● (A B): grouping
● {n}: n rows
● {n,}: n or more rows
● {n,m}: greater or equal to n rows and less than or equal to m rows
● {,m}: more than 0 and less than or equal to m rows

● The current patch only supports “+”and“*”

24Copyright(c) 2024 SRA OSS LLC

Handling aggregates in the target list
● Basically same as aggregates in Window

clause without RPR
● Except that the aggregate is applied to only

matched rows if RPR clause exists

25Copyright(c) 2024 SRA OSS LLC

Example aggregate functions

 company | tdate | price | count1 | count2
----------+------------+-------+--------+--------
 company1 | 2023-07-01 | 100 | 10 | 4
 company1 | 2023-07-02 | 200 | 9 | 0
 company1 | 2023-07-03 | 150 | 8 | 0
 company1 | 2023-07-04 | 140 | 7 | 0
 company1 | 2023-07-05 | 150 | 6 | 0
 company1 | 2023-07-06 | 90 | 5 | 4
 company1 | 2023-07-07 | 110 | 4 | 0
 company1 | 2023-07-08 | 130 | 3 | 0
 company1 | 2023-07-09 | 120 | 2 | 0
 company1 | 2023-07-10 | 130 | 1 | 0
(10 rows)

SELECT company, tdate, price,
count(*) OVER w1 AS count1,
count(*) OVER w2 AS count2
 FROM stock
 WINDOW w1 AS (
 PARTITION BY company
 ORDER BY tdate
 ROWS BETWEEN CURRENT ROW AND
 UNBOUNDED FOLLOWING
),
 w2 AS (
 PARTITION BY company
 ORDER BY tdate
 ROWS BETWEEN CURRENT ROW AND
 UNBOUNDED FOLLOWING
 AFTER MATCH SKIP PAST LAST ROW
 INITIAL
 PATTERN (START UP+ DOWN+)
 DEFINE
 START AS TRUE,
 UP AS price > PREV(price),
 DOWN AS price < PREV(price)
);

26Copyright(c) 2024 SRA OSS LLC

About RPR Patch

● Implemented in the WINDOW clause
● Proposing patches for PostgreSQL 18 in pgsql-hackers

● https://www.postgresql.org/message-id/
20230625.210509.1276733411677577841.t-ishii
%40sranhm.sra.co.jp

● Patches are for the parser, planner, executor, tests and docs.
about 3,000 lines (without tests and documents)

● New regression test is added to src/test/regress/sql/rpr.sql

27Copyright(c) 2024 SRA OSS LLC

Implementation of pattern
matching using regular expressions

PATTERN (START UP+ DOWN+)
DEFINE
 START AS TRUE,
 UP AS price > PREV(price),
 DOWN AS price < PREV(price)

price matched variables

100 START
200 START UP
150 START DOWN
140 START DOWN
150 START UP

START START START START START
START UP START START START
START UP DOWN START START
START UP DOWN START START
:
:
START UP DOWN DOWN UP

Pattern matching
Using regular expression

START UP+ DOWN+

START UP DOWN DOWN UP

Generate possible combinations

The longest match is the
Final result

The pattern match results
are expressed as strings.

Then do regular expression
search against the strings

28Copyright(c) 2024 SRA OSS LLC

Future plans

● TODO toward PostgreSQL v18
● Enhance the pattern matching engine

– Less memory consumption
● TODO after the first commit

● Implement more features
– MEASURE, SUBSET
– More regular expressions
– And more...

29Copyright(c) 2024 SRA OSS LLC

Demonstrations

30Copyright(c) 2024 SRA OSS LLC

Search for “extreme hot days”

● What is “extreme hot day”?
● A day whose maximum temperature exceeds 35

degrees Celsius (95 degrees Fahrenheit)
● What are “extreme hot days”?

● Consecutive extreme hot days

31Copyright(c) 2024 SRA OSS LLC

The data

● Max temperature in a
day in major cities
around Tokyo, Japan

● Data was
downloaded from
Japan Meteorological
Agency web page

Map: Wikipedia
https://www.data.jma.go.jp/risk/obsdl/index.php

32Copyright(c) 2024 SRA OSS LLC

The table

CREATE TABLE summer_temperature (
 city text NOT NULL,
 date date NOT NULL,
 highest_tmp numeric(4,2) NOT NULL,
 lowest_tmp numeric(4,2) NOT NULL
);

33Copyright(c) 2024 SRA OSS LLC

Search for the number of
consecutive extreme hot days

 SELECT city, date, highest_tmp, lowest_tmp,
 first_value(highest_tmp) OVER w,
 last_value(highest_tmp) OVER w,
 max(highest_tmp) OVER w AS high_max,
 count(*) OVER w AS duration,
 avg(highest_tmp) OVER w AS average
 FROM summer_temperature
 WINDOW w AS (
 PARTITION BY city
 ORDER BY date
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
 AFTER MATCH SKIP PAST LAST ROW
 INITIAL
 PATTERN (START M+)
 DEFINE
 START AS TRUE,
 M AS highest_tmp >= 35 AND PREV(highest_tmp) >= 35
);

Number of rows matching
the pattern “M”

Max temperature in the
current row exceeds 35
and the one in the
previous row also exceeds
35

Frames are created for
each city and rows are
ordered by date

Step 1: create a query to find consecutive extreme hot days

34Copyright(c) 2024 SRA OSS LLC

Search for consecutive extreme hot days
longer than 5 days

CREATE VIEW extreme_hot_days AS
 SELECT city, date, highest_tmp, lowest_tmp,
 first_value(highest_tmp) OVER w,
 last_value(highest_tmp) OVER w,
 max(highest_tmp) OVER w AS high_max,
 count(*) OVER w AS duration,
 avg(highest_tmp) OVER w AS average
 FROM summer_temperature
 WINDOW w AS (
 PARTITION BY city
 ORDER BY date
 ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
 AFTER MATCH SKIP PAST LAST ROW
 INITIAL
 PATTERN (START M+)
 DEFINE
 START AS TRUE,
 M AS highest_tmp >= 35 AND PREV(highest_tmp) >= 35
);

Step 2: create a view from the step 1 query

35Copyright(c) 2024 SRA OSS LLC

Search for the number of
consecutive extreme hot days

longer than 5 days

Step 3: query against the view

SELECT city, date as start_date, high_max,
duration, trunc(average,2) AS avg FROM extreme_hot_days
WHERE duration::integer >= 5
ORDER BY duration::integer DESC;
 city | start_date | high_max | duration | avg
------------+------------+----------+----------+-------
 Kofu | 2023-07-23 | 38.70 | 9 | 37.32
 Maebashi | 2023-07-24 | 38.90 | 8 | 38.05
 Saitama | 2023-07-24 | 38.80 | 8 | 37.72
 Tokyo | 2023-07-24 | 37.70 | 8 | 36.43
 Utsunomiya | 2023-07-25 | 37.00 | 7 | 36.35
 Maebashi | 2023-08-02 | 38.20 | 6 | 36.70
 Maebashi | 2023-08-17 | 36.00 | 5 | 35.64
(7 rows)

36Copyright(c) 2024 SRA OSS LLC

References

● ISO/IEC 19075-5 “Information technology – Guidance for the use
of database language SQL – Part5: Row Pattern Recognition”

● Specification of Row Pattern Recognition in the SQL Standard and
its Implementations
● https://link.springer.com/article/10.1007/s13222-022-00404-3

● Trino 426 Documentation (MATCH_RECOGNIZE)
● https://trino.io/docs/current/sql/match-recognize.html

● Trino 426 Documentation (Row pattern recognition in window
structures)
● https://trino.io/docs/current/sql/pattern-recognition-in-window.htm

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36

