
Trigger: How it Works in PostgreSQL Internals
PGConf.EU 2022, Berlin, Germany

Oct 26, 2022

Yugo Nagata (SRA OSS LLC)

2© 2022 SRA OSS LLC

● Yugo Nagata
– Software Engineer & Researcher at SRA OSS LLC
– Research and Development on PostgreSQL

● Incremental View Maintenance (IVM)
● pg_ivm (https://github.com/sraoss/pg_ivm)

– Lecture on PostgreSQL Internal

About me

https://github.com/sraoss/pg_ivm

3© 2022 SRA OSS LLC

● Overview of Trigger
● How Triggers are created
● How Triggers work

Outline

4© 2022 SRA OSS LLC

Overview of Trigger

5© 2022 SRA OSS LLC

Trigger

● A special function is automatically executed whenever a
certain type of operation is performed

● Attached to tables, views, and foreign tables

Table

Trigger

INSERT, UPDATE, DELETE, ...

Function

6© 2022 SRA OSS LLC

Use Cases of Triggers

● Audit trail / logging
● Input data validation
● Enforcing / checking constraints
● Complex business rules

Table

Trigger

INSERT, UPDATE, DELETE, ...

Function

Audit
TrailBusiness

Data

validate

logging
generate

constraints check

7© 2022 SRA OSS LLC

When a Trigger is Fired

After or before ...
● INSERT, UPDATE, DELETE
● TRUNCATE

● COPY FROM
● MERGE (PG15+)

Table

Trigger

INSERT, UPDATE, DELETE, TRUNCATE

Function

COPY FROM MERGE

8© 2022 SRA OSS LLC

Types of Triggers

● Per-row (row-level) trigger
– Invoked once for each row that is affected by the statement

● Per-statement (statement-level) trigger
– Invoked only once when an appropriate statement is executed

● Triggers on TRUNCATE may only be defined at statement
level.

9© 2022 SRA OSS LLC

What a Trigger Function Can Do

● Scan and/or modify other tables
● Refer to the old and/or new row record (in row-level triggers)
● Modify the row being inserted or updated, or skip the operation

(in row-level BEFORE triggers)

Table

Trigger

UPDATE

Function

(OLD record → NEW record)

Other
TablesScan, Modify

Refer to, Modify

Scan, Modify

Skip

Raise an error

10© 2022 SRA OSS LLC

Transition Tables

● Set of affected rows
– OLD TABLE: before-images of all rows updated or deleted
– NEW TABLE: after-images of all rows updated or inserted

● In AFTER triggers (both statement-level and row-level)

Table

Trigger

UPDATE

Function

Refer to

OLD
Table

NEW
Table

11© 2022 SRA OSS LLC

INSTEAD OF Triggers on Views

View

INSTEAD OF
Trigger

INSERT, UPDATE, DELETE

Function

Per-row

Base TablesBase Tables

define
Modify

Making a complex view updatable

12© 2022 SRA OSS LLC

How Triggers are created

13© 2022 SRA OSS LLC

CREATE TRIGGER

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

The trigger function must be
defined before creating a trigger.
 Table:

accounts

Trigger
check_update

UPDATE

Function:
check_account_update()

Per-row

BEFORE

14© 2022 SRA OSS LLC

Creating a trigger function

CREATE FUNCTION check_account_update()
 RETURNS trigger AS $$
 BEGIN
 IF NEW.data > 100 THEN
 RAISE EXCEPTION 'data out of data';
 END IF;
 RETURN NEW;
 END;
 $$ LANGUAGE plpgsql;

Returning type: “trigger”
No arguments

Return the row to be inserted,
or the new row after update.
 - Can be modified
 - NULL means skip of the operation.

15© 2022 SRA OSS LLC

CREATE TRIGGER with arguments
CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update(true);

CREATE FUNCTION check_account_update()
 RETURNS trigger AS $$
 BEGIN
 IF NEW.data > 100 AND TG_ARGV[0] = 'true' THEN
 RAISE EXCEPTION 'data out of data';
 END IF;
 RETURN NEW;
 END;
 $$ LANGUAGE plpgsql;

16© 2022 SRA OSS LLC

WHEN condition

CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
 EXECUTE FUNCTION check_account_update();

Table:
accounts

Trigger
check_update

UPDATE

Function:
check_account_update()

Per-row

BEFORE

only if column balance has in fact changed

17© 2022 SRA OSS LLC

System Catalogs

FunctionTable

pg_class

pg_trigger

pg_proc
Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...

18© 2022 SRA OSS LLC

Constraint Trigger

● A trigger for implementing a constraint
● Row-level AFTER trigger only
● The timing of the trigger firing is deferrable

– At the end of the statement = immediate
– At the end of the containing transaction = deferred

Transaction
Start

Transaction
End

INSERT INTO t VALUES (10)BEGIN; COMMIT; time

Table: t
Constraint

Trigger

Statement
Start

Statement
End

immediate

deferred

19© 2022 SRA OSS LLC

Creating a constraint trigger

CREATE CONSTRAINT TRIGGER check_constraint
 AFTER INSERT ON accounts
 DEFERRABLE INITIALLY DEFERRED
 FOR EACH ROW
 EXECUTE FUNCTION check_my_constraint();

Table:
accounts

Trigger
check_constraint

INSERT

Function:
check_my_constraint()

Per-row

AFTER

deferrable and initially deferred

20© 2022 SRA OSS LLC

SET CONSTRAINTS

BEGIN;

SET CONSTRAINTS check_constraint DEFERRED;
 or
SET CONSTRAINTS check_constraint IMMEDIATE;

...

END;

21© 2022 SRA OSS LLC

System Catalogs

Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...

FunctionTable

pg_class

pg_trigger

pg_proc

Constraint

pg_constraint

22© 2022 SRA OSS LLC

Constraint Triggers Created Internally

● Foreign key constraint (Referential Integrity)

● Primary key / unique / exclusion constraint (deferrable only)
CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE DEFERRABLE
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products (product_no),
 quantity integer
);

23© 2022 SRA OSS LLC

Foreign Key Constraint

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 ...
);

CREATE TABLE order_items (
 order_id integer REFERENCES orders ON DELETE CASCADE,
 ...
);

order_id = 110

order_id = 100

orders

order_id = 110

order_id = 100

order_items

must exists in orders
INSERT

DELETE
delete in cascade

24© 2022 SRA OSS LLC

Foreign Key Constraint Triggers

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 ...
);

CREATE TABLE order_items (
 order_id integer REFERENCES orders ON DELETE CASCADE,
 ...
); INSERT

UPDATE
DELETE
UPDATE Table:

orders

Triggers
RI_ConstraintTrigger_a_xxxx

Table:
order_items

Triggers
RI_ConstraintTrigger_c_xxxx

Functions:
RI_FKey_check_ins()
RI_FKey_check_upd()

Functions:
RI_FKey_cascade_del()

RI_FKey_noaction_upd()

check

delete

error

25© 2022 SRA OSS LLC

Primary Key / Unique / Exclusion Constraint

● Not deferrable
– Unique constrain is checked when a new index entry is inserted.
– Exclusion constrain is checked in the executor.
– No constraint triggers

● Deferrable
– Constraints are checked using constraint triggers.

Transaction
Start

Transaction
End

INSERT INTO t VALUES (10)BEGIN; COMMIT; time

Table: t
Trigger

Unique_ConstraintTrigger_xxx

Statement
Start

Statement
End

immediate
deferred

Function:
unique_key_recheck()

check

Index:
idx_t_i

26© 2022 SRA OSS LLC

System Catalogs

FunctionTable

pg_class

pg_trigger

pg_proc

Constraint

pg_constraint

Index

Index
Info.

pg_index

Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...

27© 2022 SRA OSS LLC

How Triggers Work

28© 2022 SRA OSS LLC

How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

29© 2022 SRA OSS LLC

How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check
- if the trigger is enabled
- WNEN condition etc.

30© 2022 SRA OSS LLC

How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check
- if the trigger is enabled
- WNEN condition etc.

execute
- with TriggerData
 - trigger type
 - a NEW/OLD row
 - transition tables
 - arguments
 - …and more

31© 2022 SRA OSS LLC

How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check
- if the trigger is enabled
- WHEN condition etc.

execute
- with TriggerData
 - trigger type
 - a NEW/OLD row
 - transition tables
 - arguments
 - …and more

return
- (modified)
 NEW row
- or NULL for
 skipping the
 operation

32© 2022 SRA OSS LLC

When Triggers are Fired:
 (1) Statement-level BEFORE triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

tbl

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

Statement-level BEFORE triggers

Executed Triggers:

33© 2022 SRA OSS LLC

When Triggers are Fired:
 (2) The statement starts processing rows

UPDATE tbl SET val = val + 100 WHERE flag = 1;

tblStart

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

Statement-level BEFORE triggers

Executed Triggers:

34© 2022 SRA OSS LLC

When Triggers are Fired:
 (3) Row-level BEFORE triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3

Executed Triggers:

35© 2022 SRA OSS LLC

When Triggers are Fired:
 (4) The row is updated

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3

Executed Triggers:

36© 2022 SRA OSS LLC

When Triggers are Fired:
 (5) Row-level AFTER triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3

Executed Triggers:

Row-level AFTER triggers:
 for id = 3

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)

NEW table:
 (id=3, val=130, flag=1)

37© 2022 SRA OSS LLC

When Triggers are Fired:
 (6) Processing the next rows ...

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3, 4, 6

Executed Triggers:

Row-level AFTER triggers:
 for id = 3, 4, 6

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)

38© 2022 SRA OSS LLC

When Triggers are Fired:
 (7) Statement-level AFTER triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3, 4, 6

Executed Triggers:

Row-level AFTER triggers:
 for id = 3, 4, 6
Statement-level AFTER triggers

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)

End

39© 2022 SRA OSS LLC

When Triggers are Fired:
 (8) Queued triggers are executed

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tbl
Statement-level BEFORE triggers
Row-level BEFORE triggers:
 for id = 3, 4, 6
Row-level AFTER triggers:
 for id = 3, 4, 6
Statement-level AFTER triggers

Executed Triggers:

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)

Start

End

Refer to

40© 2022 SRA OSS LLC

Multiple Triggers on a Table

● Multiple triggers for the same event on the same relation
are fired alphabetical order by name.

Before_Statement_A

Before_Statement_B

Before_Statement_C

Before_Row_A

Before_Row_B

Before_Row_C

After_Row_A

After_Row_B

After_Row_C

Before_Row_A

Before_Row_B

Before_Row_C

After_Row_A

After_Row_B

After_Row_C

After_Statement_A

After_Statement_B

After_Statement_C

Statement-level
BEFORE triggers:

Row-level
BEFORE triggers:

For row1: For row2: For row1: For row2:

Statement-level
AFTER triggers:

... ...

:
:

:
:

:
:

:
:

:
:

:
:

Row-level
AFTER triggers:

41© 2022 SRA OSS LLC

Deferred Constraint Triggers

● Not executed at the end of the statement
● Moved to the trigger queue for the transaction
● Executed at the end of the transaction

Row-level AFTER trigger (immediate)

Row-level AFTER trigger (deferred)

Row-level AFTER trigger (immediate)

Row-level AFTER trigger (deferred)

Statement-level AFTER trigger

queue:

Row-level AFTER trigger (deferred)

Row-level AFTER trigger (deferred)

:

queue for the transaction:

Statement End Transaction End

Executed

Executed

42© 2022 SRA OSS LLC

SET CONSTRAINTS

● Deferred constraint trigger in the queue are executed
when changed to immediate.

BEGIN;

INSERT INTO tbl VALUES(999);
SET CONSTRAINTS tbl_check_constraint IMMEDIATE;

Row-level AFTER trigger (deferred)

Row-level AFTER trigger (deferred)

queue:
Row-level AFTER trigger (deferred)

Row-level AFTER trigger (deferred) (immediate)

:

queue for the transaction:

Statement End SET CONSTRAINTS

Executed

43© 2022 SRA OSS LLC

Triggers and Transaction

● Triggers are executed as part of the same transaction as
the statement that triggered it.
– Regardless of whether it is deferred or not

● If either the statement or the trigger causes an error, the
effects of both will be rolled back.

44© 2022 SRA OSS LLC

Some Complex Situations

45© 2022 SRA OSS LLC

INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200)
 ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT

46© 2022 SRA OSS LLC

INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200)
 ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT

Statement-level triggers for INSERT
 BEFORE and AFTER

Statement-level triggers for UPDATE
 BEFORE and AFTER

47© 2022 SRA OSS LLC

INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200)
 ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT
successfully
inserted

tried to insert

Statement-level triggers for INSERT
 BEFORE and AFTER

Statement-level triggers for UPDATE
 BEFORE and AFTER

Row-level triggers for INSERT (1, 100)
 BEFORE and AFTER

Row-level triggers for INSERT (1, 200)
 BEFORE only

48© 2022 SRA OSS LLC

INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200)
 ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT
successfully
inserted

tried to insert

on conflict

Statement-level triggers for INSERT
 BEFORE and AFTER

Statement-level triggers for UPDATE
 BEFORE and AFTER

Row-level triggers for UPDATE (2,20) → (2,200)
 BEFORE and AFTER

Row-level triggers for INSERT (1, 100)
 BEFORE and AFTER

Row-level triggers for INSERT (1, 200)
 BEFORE only

49© 2022 SRA OSS LLC

MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
 INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
 UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
 DELETE;

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes
 (winename, stock_delta)

MERGE

50© 2022 SRA OSS LLC

MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
 INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
 UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
 DELETE;

Statement-level triggers for INSERT

Statement-level triggers for UPDATE

Statement-level triggers for DELETE

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes
 (winename, stock_delta)

MERGE

51© 2022 SRA OSS LLC

MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
 INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
 UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
 DELETE;

Statement-level triggers for INSERT

Statement-level triggers for UPDATE

Statement-level triggers for DELETE

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes
 (winename, stock_delta)

MERGE

Row-level triggers for INSERT

Row-level triggers for UPDATE

Row-level triggers for DELETE

updated

inserted

deleted

52© 2022 SRA OSS LLC

Triggers on Partitioned Table

Partitioned Table:
tbl

Partition: tbl_1
(1 key 10)≦ ≦

Partition: tbl_2
(11 key 20)≦ ≦

key = 3 → 7

key = 5

key = 12

key = 16

UPDATE tbl SET key = 7 WHERE key = 3;

Partitioned Table:
tbl

53© 2022 SRA OSS LLC

Triggers on Partitioned Table

Partitioned Table:
tbl

Partition: tbl_1
(1 key 10)≦ ≦

Partition: tbl_2
(11 key 20)≦ ≦

key = 3 → 7

key = 5

key = 12

key = 16

UPDATE tbl SET key = 7 WHERE key = 3;

Statement-level triggers for UPDATE on tbl
 BEFORE and AFTER Partitioned Table:

tbl
Row-level triggers for UPDATE on tbl_1
 BEFORE and AFTER

54© 2022 SRA OSS LLC

Triggers on Partitioned Table:
moving between partitions

Partitioned Table:
tbl

Partition: tbl_1
(1 key 10)≦ ≦

Partition: tbl_2
(11 key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

key = 14

moveddeleted

inserted

55© 2022 SRA OSS LLC

Triggers on Partitioned Table:
moving between partitions

Partitioned Table:
tbl

Partition: tbl_1
(1 key 10)≦ ≦

Partition: tbl_2
(11 key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

key = 14

moveddeleted

inserted

Statement-level triggers for UPDATE on tbl
 BEFORE and AFTER

Row-level triggers for UPDATE on tbl_1
 BEFORE only

56© 2022 SRA OSS LLC

Triggers on Partitioned Table:
moving between partitions

Partitioned Table:
tbl

Partition: tbl_1
(1 key 10)≦ ≦

Partition: tbl_2
(11 key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

Row-level triggers for UPDATE on tbl_1
 BEFORE only

key = 14

moved

Row-level triggers for DELETE on tbl_1
 BEFORE and AFTER

Row-level triggers for INSERT on tbl_2
 BEFORE and AFTER

deleted

inserted

Statement-level triggers for UPDATE on tbl
 BEFORE and AFTER

57© 2022 SRA OSS LLC

Summary

● Triggers
– Automatically executed whenever a certain type of operation is performed
– Internally created and used for constraints implementation

● How triggers work
– How and when it is fired
– Some complex situations

58© 2022 SRA OSS LLC

Thank you!

	スライド 1
	スライド 2
	スライド 3
	スライド 4
	スライド 5
	スライド 6
	スライド 7
	スライド 8
	スライド 9
	スライド 10
	スライド 11
	スライド 12
	スライド 13
	スライド 14
	スライド 15
	スライド 16
	スライド 17
	スライド 18
	スライド 19
	スライド 20
	スライド 21
	スライド 22
	スライド 23
	スライド 24
	スライド 25
	スライド 26
	スライド 27
	スライド 28
	スライド 29
	スライド 30
	スライド 31
	スライド 32
	スライド 33
	スライド 34
	スライド 35
	スライド 36
	スライド 37
	スライド 38
	スライド 39
	スライド 40
	スライド 41
	スライド 42
	スライド 43
	スライド 44
	スライド 45
	スライド 46
	スライド 47
	スライド 48
	スライド 49
	スライド 50
	スライド 51
	スライド 52
	スライド 53
	スライド 54
	スライド 55
	スライド 56
	スライド 57
	スライド 58

