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● Incremental View Maintenance (IVM)
● pg_ivm (https://github.com/sraoss/pg_ivm)

– Lecture on PostgreSQL Internal

About me

https://github.com/sraoss/pg_ivm
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● Overview of Trigger
● How Triggers are created
● How Triggers work

Outline
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Overview of Trigger
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Trigger

● A special function is automatically executed whenever a 
certain type of operation is performed 

● Attached to tables, views, and foreign tables

Table

Trigger

INSERT, UPDATE, DELETE, ...

Function
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Use Cases of Triggers

● Audit trail / logging
● Input data validation
● Enforcing / checking constraints
● Complex business rules

Table

Trigger

INSERT, UPDATE, DELETE, ...

Function

Audit
TrailBusiness

Data

validate

logging
generate

constraints check
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When a Trigger is Fired

After or before ...
● INSERT, UPDATE, DELETE
● TRUNCATE

● COPY FROM
● MERGE (PG15+)

Table

Trigger

INSERT, UPDATE, DELETE, TRUNCATE

Function

COPY FROM MERGE
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Types of Triggers

● Per-row (row-level) trigger
– Invoked once for each row that is affected by the statement

● Per-statement (statement-level) trigger
– Invoked only once when an appropriate statement is executed

● Triggers on TRUNCATE may only be defined at statement 
level.
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What a Trigger Function Can Do

● Scan and/or modify other tables
● Refer to the old and/or new row record (in row-level triggers)
● Modify the row being inserted or updated, or skip the operation

(in row-level BEFORE triggers)

Table 

Trigger

UPDATE

Function

(OLD record → NEW record)

Other
TablesScan, Modify

Refer to, Modify

Scan, Modify

Skip

Raise an error
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Transition Tables

● Set of affected rows
– OLD TABLE: before-images of all rows updated or deleted
– NEW TABLE: after-images of all rows updated or inserted

● In AFTER triggers (both statement-level and row-level)

Table 

Trigger

UPDATE

Function

Refer to

OLD
Table

NEW
Table
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INSTEAD OF Triggers on Views

View

INSTEAD OF
Trigger

INSERT, UPDATE, DELETE

Function

Per-row

Base TablesBase Tables

define
Modify

Making a complex view updatable
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How Triggers are created
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CREATE TRIGGER

CREATE TRIGGER check_update
    BEFORE UPDATE ON accounts
    FOR EACH ROW
    EXECUTE FUNCTION check_account_update();

The trigger function must be 
defined before creating a trigger. 
 Table: 

accounts

Trigger
check_update

UPDATE

Function:
check_account_update()

Per-row

BEFORE
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Creating a trigger function

CREATE FUNCTION check_account_update() 
 RETURNS trigger AS $$
  BEGIN
   IF NEW.data > 100 THEN
     RAISE EXCEPTION 'data out of data';
   END IF;
   RETURN NEW;
  END;
 $$ LANGUAGE plpgsql;

Returning type: “trigger”
No arguments

Return the row to be inserted, 
or the new row after update.
 - Can be modified 
 - NULL means skip of the operation.
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CREATE TRIGGER with arguments
CREATE TRIGGER check_update
    BEFORE UPDATE ON accounts
    FOR EACH ROW
    EXECUTE FUNCTION check_account_update(true);

CREATE FUNCTION check_account_update() 
 RETURNS trigger AS $$
  BEGIN
   IF NEW.data > 100 AND TG_ARGV[0] = 'true' THEN
     RAISE EXCEPTION 'data out of data';
   END IF;
   RETURN NEW;
  END;
 $$ LANGUAGE plpgsql;
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WHEN condition

CREATE TRIGGER check_update
    BEFORE UPDATE ON accounts
    FOR EACH ROW
    WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
    EXECUTE FUNCTION check_account_update();

Table: 
accounts

Trigger
check_update

UPDATE

Function:
check_account_update()

Per-row

BEFORE

only if column balance has in fact changed
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System Catalogs

FunctionTable

pg_class

pg_trigger

pg_proc
Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...
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Constraint Trigger

● A trigger for implementing a constraint
● Row-level AFTER trigger only
● The timing of the trigger firing is deferrable

– At  the end of the statement  = immediate
– At the end of the containing transaction = deferred

Transaction 
Start

Transaction 
End

INSERT INTO t VALUES (10)BEGIN; COMMIT; time

Table: t
Constraint

Trigger

Statement 
Start

Statement 
End

immediate

deferred
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Creating a constraint trigger

CREATE CONSTRAINT TRIGGER check_constraint
    AFTER INSERT ON accounts
    DEFERRABLE INITIALLY DEFERRED
    FOR EACH ROW
    EXECUTE FUNCTION check_my_constraint();

Table: 
accounts

Trigger
check_constraint

INSERT

Function:
check_my_constraint()

Per-row

AFTER

deferrable and initially deferred
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SET CONSTRAINTS

BEGIN;

SET CONSTRAINTS check_constraint DEFERRED;
 or
SET CONSTRAINTS check_constraint IMMEDIATE;

...

END;
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System Catalogs

Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...

FunctionTable

pg_class

pg_trigger

pg_proc

Constraint

pg_constraint
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Constraint Triggers Created Internally

● Foreign key constraint (Referential Integrity)

● Primary key / unique / exclusion constraint  (deferrable only)
CREATE TABLE distributors (
    did     integer,
    name    varchar(40) UNIQUE DEFERRABLE
);

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    product_no integer REFERENCES products (product_no),
    quantity integer
);
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Foreign Key Constraint

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    ...
);

CREATE TABLE order_items (
    order_id integer REFERENCES orders ON DELETE CASCADE,
    ...
);

order_id = 110

order_id = 100

orders

order_id = 110

order_id = 100

order_items

must exists in orders
INSERT

DELETE
delete in cascade
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Foreign Key Constraint Triggers

CREATE TABLE orders (
    order_id integer PRIMARY KEY,
    ...
);

CREATE TABLE order_items (
    order_id integer REFERENCES orders ON DELETE CASCADE,
    ...
); INSERT

UPDATE
DELETE
UPDATE Table: 

orders

Triggers
RI_ConstraintTrigger_a_xxxx

Table: 
order_items

Triggers
RI_ConstraintTrigger_c_xxxx

Functions:
RI_FKey_check_ins()
RI_FKey_check_upd()

Functions:
RI_FKey_cascade_del()

RI_FKey_noaction_upd()

check

delete

error
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Primary Key / Unique / Exclusion Constraint

● Not deferrable
– Unique constrain is  checked when a new index entry is inserted.
– Exclusion constrain is checked in the executor. 
– No constraint triggers

● Deferrable
– Constraints are checked using constraint triggers.

Transaction 
Start

Transaction 
End

INSERT INTO t VALUES (10)BEGIN; COMMIT; time

Table: t
Trigger

Unique_ConstraintTrigger_xxx

Statement 
Start

Statement 
End

immediate
deferred

Function:
unique_key_recheck()

check

Index: 
idx_t_i
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System Catalogs

FunctionTable

pg_class

pg_trigger

pg_proc

Constraint

pg_constraint

Index

Index
Info.

pg_index

Trigger

Trigger name

Trigger type

Arguments

WHEN condition

Transition table names

...
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How Triggers Work
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How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE
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How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check 
- if the trigger is enabled
- WNEN condition etc.



30© 2022 SRA OSS LLC

How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check 
- if the trigger is enabled
- WNEN condition etc.

execute 
- with TriggerData
   - trigger type
   - a NEW/OLD row
   - transition tables
   - arguments
   - …and more
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How a trigger is fired

Executor
(ModifyTable plan node)

Table Trigger Function

modify
- INSERT
- DELETE
- UPDATE
- MERGE

check 
- if the trigger is enabled
- WHEN condition etc.

execute 
- with TriggerData
   - trigger type
   - a NEW/OLD row
   - transition tables
   - arguments
   - …and more

return
- (modified)
  NEW row
- or NULL for
  skipping the
  operation
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When Triggers are Fired:
 (1) Statement-level BEFORE triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

tbl

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

Statement-level BEFORE triggers

Executed Triggers:
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When Triggers are Fired:
 (2) The statement starts processing rows

UPDATE tbl SET val = val + 100 WHERE flag = 1;

tblStart

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

Statement-level BEFORE triggers

Executed Triggers:
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When Triggers are Fired:
 (3) Row-level BEFORE triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 30, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3

Executed Triggers:
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When Triggers are Fired:
 (4) The row is updated

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3

Executed Triggers:
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When Triggers are Fired:
 (5) Row-level AFTER triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 60, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 40, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3

Executed Triggers:

Row-level AFTER triggers:
  for id = 3

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)

NEW table:
 (id=3, val=130, flag=1)
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When Triggers are Fired:
 (6) Processing the next rows ...

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3, 4, 6

Executed Triggers:

Row-level AFTER triggers:
  for id = 3, 4, 6 

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)
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When Triggers are Fired:
 (7) Statement-level AFTER triggers

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tblStart

Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3, 4, 6

Executed Triggers:

Row-level AFTER triggers:
  for id = 3, 4, 6
Statement-level AFTER triggers
 

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)

End
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When Triggers are Fired:
 (8) Queued triggers are executed

UPDATE tbl SET val = val + 100 WHERE flag = 1;

id = 7, val = 70, flag = 0

id = 6, val = 160, flag = 1

id = 5, val = 50, flag = 0

id = 4, val = 140, flag = 1

id = 3, val = 130, flag = 1

id = 2, val = 20, flag = 0

id = 1, val = 10, flag = 0

id = 8, val = 80, flag = 0

tbl
Statement-level BEFORE triggers
Row-level BEFORE triggers:
  for id = 3, 4, 6
Row-level AFTER triggers:
  for id = 3, 4, 6
Statement-level AFTER triggers

Executed Triggers:

 

queue:

Transition Tables:

OLD table:
 (id=3, val=30, flag=1)
 (id=4, val=40, flag=1)
 (id=6, val=60, flag=1)

NEW table:
 (id=3, val=130, flag=1)
 (id=3, val=140, flag=1)
 (id=3, val=160, flag=1)

Start

End

Refer to
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Multiple Triggers on a Table

● Multiple triggers for the same event on the same relation 
are fired alphabetical order by name.

Before_Statement_A

Before_Statement_B

Before_Statement_C

Before_Row_A

Before_Row_B

Before_Row_C

After_Row_A

After_Row_B

After_Row_C

Before_Row_A

Before_Row_B

Before_Row_C

After_Row_A

After_Row_B

After_Row_C

After_Statement_A

After_Statement_B

After_Statement_C

Statement-level
BEFORE triggers:

Row-level
BEFORE triggers:

For row1: For row2: For row1: For row2:

Statement-level
AFTER triggers:

... ...

:
:

:
:

:
:

:
:

:
:

:
:

Row-level
AFTER triggers:
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Deferred Constraint Triggers

● Not executed at the end of the statement
● Moved to the trigger queue for the transaction
● Executed at the end of the transaction

Row-level AFTER trigger (immediate) 

Row-level AFTER trigger (deferred) 

Row-level AFTER trigger (immediate)

Row-level AFTER trigger (deferred) 

Statement-level AFTER trigger

queue:

Row-level AFTER trigger (deferred) 

Row-level AFTER trigger (deferred)

: 

queue for the transaction:

Statement End Transaction End

Executed

Executed
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SET CONSTRAINTS

● Deferred constraint trigger in the queue are executed 
when changed to immediate.

BEGIN;

INSERT INTO tbl VALUES(999);
SET CONSTRAINTS tbl_check_constraint IMMEDIATE;

Row-level AFTER trigger (deferred) 

Row-level AFTER trigger (deferred) 

queue:
Row-level AFTER trigger (deferred) 

Row-level AFTER trigger (deferred)          (immediate)

: 

queue for the transaction:

Statement End SET CONSTRAINTS

Executed
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Triggers and Transaction

● Triggers are executed as part of the same transaction as 
the statement that triggered it.
– Regardless of whether it is deferred or not

● If either the statement or the trigger causes an error, the 
effects of both will be rolled back.
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Some Complex Situations
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INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200) 
  ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT
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INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200) 
  ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT

Statement-level triggers for INSERT
  BEFORE  and AFTER

Statement-level triggers for UPDATE
  BEFORE  and AFTER
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INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200) 
  ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT
successfully 
inserted 

tried to insert

Statement-level triggers for INSERT
  BEFORE  and AFTER

Statement-level triggers for UPDATE
  BEFORE  and AFTER

Row-level triggers for INSERT (1, 100)
  BEFORE  and AFTER

Row-level triggers for INSERT (1, 200)
  BEFORE  only
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INSERT ... ON CONFLICT DO UPDATE

INSERT INTO tbl VALUES (1,100), (2,200) 
  ON CONFLICT(id) DO UPDATE val = EXCLUDED.val;

id = 2, val = 20

tbl

id = 2, val = 200

id = 1, val = 100

INSERT
successfully 
inserted 

tried to insert

on conflict

Statement-level triggers for INSERT
  BEFORE  and AFTER

Statement-level triggers for UPDATE
  BEFORE  and AFTER

Row-level triggers for UPDATE (2,20) → (2,200)
  BEFORE  and AFTER

Row-level triggers for INSERT (1, 100)
  BEFORE  and AFTER

Row-level triggers for INSERT (1, 200)
  BEFORE  only
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MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
  INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
  UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
  DELETE;

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes 
 (winename, stock_delta)

MERGE
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MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
  INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
  UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
  DELETE;

Statement-level triggers for INSERT

Statement-level triggers for UPDATE

Statement-level triggers for DELETE

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes 
 (winename, stock_delta)

MERGE
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MERGE

MERGE INTO wines w
USING wine_stock_changes s
ON s.winename = w.winename
WHEN NOT MATCHED AND s.stock_delta > 0 THEN
  INSERT VALUES(s.winename, s.stock_delta)
WHEN MATCHED AND w.stock + s.stock_delta > 0 THEN
  UPDATE SET stock = w.stock + s.stock_delta
WHEN MATCHED THEN
  DELETE;

Statement-level triggers for INSERT

Statement-level triggers for UPDATE

Statement-level triggers for DELETE

'Chateau Lafite 2003', 2

‘Chateau Latour 1997’, 1

‘Chateau Margaux 2000’, 1

'Chateau Lafite 2003', 1

‘Chateau Latour 1997’, -1

wines (winename, stock)wine_stock_changes 
 (winename, stock_delta)

MERGE

Row-level triggers for INSERT

Row-level triggers for UPDATE

Row-level triggers for DELETE

updated

inserted

deleted
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Triggers on Partitioned Table

Partitioned Table: 
tbl

Partition: tbl_1
( 1  key 10)≦ ≦

Partition: tbl_2
( 11  key 20)≦ ≦

key = 3 → 7

key = 5

key = 12

key = 16

UPDATE tbl SET key = 7 WHERE key = 3;

Partitioned Table: 
tbl



53© 2022 SRA OSS LLC

Triggers on Partitioned Table

Partitioned Table: 
tbl

Partition: tbl_1
( 1  key 10)≦ ≦

Partition: tbl_2
( 11  key 20)≦ ≦

key = 3 → 7

key = 5

key = 12

key = 16

UPDATE tbl SET key = 7 WHERE key = 3;

Statement-level triggers for UPDATE on tbl
  BEFORE and AFTER Partitioned Table: 

tbl
Row-level triggers for UPDATE on tbl_1
  BEFORE and AFTER 
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Triggers on Partitioned Table: 
moving between partitions

Partitioned Table: 
tbl

Partition: tbl_1
( 1  key 10)≦ ≦

Partition: tbl_2
( 11  key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

key = 14

moveddeleted

inserted
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Triggers on Partitioned Table: 
moving between partitions

Partitioned Table: 
tbl

Partition: tbl_1
( 1  key 10)≦ ≦

Partition: tbl_2
( 11  key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

key = 14

moveddeleted

inserted

Statement-level triggers for UPDATE on tbl
  BEFORE and AFTER 

Row-level triggers for UPDATE on tbl_1
  BEFORE only 
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Triggers on Partitioned Table: 
moving between partitions

Partitioned Table: 
tbl

Partition: tbl_1
( 1  key 10)≦ ≦

Partition: tbl_2
( 11  key 20)≦ ≦

key = 7 → 14

key = 5

key = 12

key = 16

UPDATE tbl SET key = 14 WHERE key = 7;

Row-level triggers for UPDATE on tbl_1
  BEFORE only 

key = 14

moved

Row-level triggers for DELETE on tbl_1
 BEFORE and AFTER

Row-level triggers for INSERT on tbl_2
  BEFORE and AFTER

deleted

inserted

Statement-level triggers for UPDATE on tbl
  BEFORE and AFTER 
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Summary

● Triggers
– Automatically executed whenever a certain type of operation is performed
– Internally created and used for constraints implementation

● How triggers work
– How and when it is fired
– Some complex situations



58© 2022 SRA OSS LLC

Thank you!
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