
https://2021.postgresconf.cn

PostgreSQL Internals and

Incremental View Maintenance

Implementation

Yu g o N a g a t a (S R A O S S , I n c . J a p a n)

About Me
 Yugo Nagata

 Software Engineer at SRA OSS, Inc. Japan

 Research and Development on PostgreSQL

 Incremental View Maintenance (IVM)

 Lecture on PostgreSQL Internal

This Talk
 PostgreSQL internals related to Incremental View Maintenance (IVM) implementation

 Query and utility command processing related to materialized Views

 Some components used in IVM implementation

 For those who are interested in PostgreSQL internals

1. What is Incremental View

Maintenance?

2. Query Processing in

PostgreSQL

3. Utility Command and

Materialized View

4. PostgreSQL Internal and

Incremental View Maintenance

Implementation

CONTENT

What is Incremental View Maintenance?

What is Incremental View Maintenance? (1)
A way to update materialized views rapidly

Table R

Table S View Definition Query“SELECT … FROM R, S ...”
Materialized

View

The results of the query are
stored in database for quick
response.

Client
query

quick response

What is Incremental View Maintenance? (2)
A way to update materialized views rapidly

Table R

Table S View Definition Query“SELECT … FROM R, S ...”
Materialized

View

The results of the query are
stored in database for quick
response.

Changed

Stale

Needs to be maintained
after a base table is modified

inconsistent

What is Incremental View Maintenance? (3)
A way to update materialized views rapidly

Table R

Table S View Definition Query“SELECT … FROM R, S ...”
Materialized

View

Changed

New!

The latest state
of the table R

1.Re-compute the contents
using the latest state of
tables.

REFRESH MATERIALIZED VIEW

=

What is Incremental View Maintenance? (4)
A way to update materialized views rapidly

Table R

Table S View Definition Query“SELECT … FROM R, S ...”
Materialized

View

Changed

The change
of the table R

1.Re-compute the contents
using the latest state of
tables.

2.Compute and apply only the
incremental change.

Changes
on the view

apply

Incremental View Maintenance

=

New!

REFRESH MATERIALIZED VIEW

=

Incremental View Maintenance (IVM) on PostgreSQL
 Not supported on PostgreSQL yet.

 We have proposed to implement IVM on PostgreSQL.

 Materialized views can be updated automatically and incrementally when a base table is updated.

 Details will be explained in the last part.

PostgreSQL Query Processing

PostgreSQL Internals and Materialized View
 Materialized Views needs to process SELECT query.

 A view is created from the results of query processing.

 How a query is processed in PostgreSQL ?

CREATE MATERIALIZED VIEW mv AS
 SELECT x, y FROM R, S WHERE R.i = S.i;

Query Processing (1)
 Parser

 Check the syntax of the query

 Build a parse tree

Parser

Analyzer

Rewriter

Planner

Executor

query string

parse tree

query tree

rewritten query tree

plan tree

tuples

 SELECT opt_all_clause opt_target_list
 into_clause from_clause where_clause
 group_clause having_clause window_clause
 {
 SelectStmt *n = makeNode(SelectStmt);
 n->targetList = $3;
 n->intoClause = $4;
 n->fromClause = $5;
 n->whereClause = $6;
 n->groupClause = ($7)->list;
 n->groupDistinct = ($7)->distinct;
 n->havingClause = $8;
 n->windowClause = $9;
 $$ = (Node *)n;
 }

src/backend/parser/gram.y

syntax rule

Building a
query tree
node

Query Processing (2)
 Analyzer

 Perform semantic analysis

 system catalog look-up

 Examples:

 table name → table OID

 Expand “ * “ to column names

 Identify OIDs of types, operators, etc.

 Transform a parse tree to a query tree

Parser

Analyzer

Rewriter

Planner

Executor

query string

parse tree

query tree

rewritten query tree

plan tree

tuples

Query Processing (3)
 Rewriter

 Apply RULE to query tree

 VIEW support

 Planner

 Create an optimal execution plan

 Build a plan tree

 Executor

 Retrieve tuples in the way given by the plan tree

→ Where will the tuples go?

Parser

Analyzer

Rewriter

Planner

Executor

query string

parse tree

query tree

rewritten query tree

plan tree

tuples

DestReceiver
 Object to manage tuple destination

 In most queries, DestRemote is used.

 Results are sent to frontend process.

 Other cases:

 Sent to a file (COPY TO)

 Sent to a new table (SELECT INTO, CREATE AS)

 etc.

Executor

tuples

DestReceiver

frontendFile Table

...

query

Recap: Query Processing
 Parser

 Analyzer

 Rewriter

 Planner

 Executor

 The destination of tuples are managed

by DestReceiver

Parser

Analyzer

Rewriter

Planner

Executor

query string

parse tree

query tree

rewritten query tree

plan tree

tuples

DestReceiver

frontendFile
Table

...

Utility Command and Materialized View

Utility Command
 CREATE, DROP, ALTER, COPY, VACUUM, REFRESH, etc..

 Commands have to be parsed first.

 Some commands including SELECT need Analyzer.

 SELECT INTO

 CREATE TABLE AS

 CREATE MATERIALIZED VIEW

 etc...

 Rewriter, Planner, and Executor are not required.

Parser

Analyzer

Rewriter

Planner

Executor

query string

parse tree

query tree

rewritten query tree

plan tree

tuples

Utility
Command

query tree

CREATE MATERIALIZED VIEW
 The behavior is similar to CREATE AS / SELECT INTO

 A relation is created from query results.

 Implemented in the same function.
(ExecCreateTableAs in backend/commands/createas.c)

 The view definition query are executed.

 Rewriter, Planner, and Executor are called internally.

 The results of the query are stored into a new table

 (= a materialized view).

 Also, the query is stored in system catalog as a query tree.

Executor

tuples

DestIntoRel

CREATE MATERIALIZED VIEW
AS SELECT … FROM ...

Materialized
View

Analyzer

query tree
System
Catalog

view definition

REFRESH MATERIALIZED VIEW
 Update a materialized view by re-execute the view definition query

 Basically, same as CREATE MATERIALIZED VIEW

 The results of the view definition query are stored into a

transient table.

 The transient table and the materialized view are swapped.

 Require a strong lock.

DestTransientRel

Materialized
View

System
Catalog

view definition

query tree

Transient
Table

swap

Executor

tuples

REFRESH MATERIALIZED VIEW CONCURRENTLY
 Update a materialized view with a weaker lock

 The results of the view definition query are stored into a temporary

table.

 Create the diff table by comparing the results and the materialized

view (using LEFT JOIN).

 Finally, merge it to the materialized view

(using DELETE and INSERT).
DestTransientRel

Materialized
View

Temporary
Table

diff
Table

make diff

merge

SQL queries are executed via SPI.

System
Catalog

view definition

query tree

Executor

tuples

SPI: Server Programming Interface
 A set of interface functions for running SQL commands in C functions.

 Example:

 SPI_exec("INSERT INTO tbl ...", 0);

 SPI_exec("SELECT ... FROM tbl WHERE ...", 0);

 The results are stored in memory.

 Can be accessed via a global variable SPI_tuptable.

Executor

tuples

DestSPI

SPI_exec(“SELECT … FROM ...”, 0);

SPI_tuptable

Recap: Utility Command of Materialized View
 The view definition query are executed in commands.

 The results are stored into various types of destinations

depending on the situation.

 Controlled by DestReceiver.

 SQL queries are executed by using SPI.
(in REFRESH MATERIALIZED VIEW CONCURRENTLY command)

Executor

tuples

DestReceiver

Materialized
View

query tree

Temporary
Table

Transient
Table

PostgreSQL Internal and

Incremental View Maintenance

Implementation

Incremental View Maintenance Implementation

Base talbesBase Tables

Materialized
View

Delta
tables

Delta
tables

Delta
tables

Changes
on

Tables

ビュー差分差分（一次差分）
View Definition

Query

apply

Changes
on

View

Modification

extract

calc

Incremental View Maintenance Implementation

Base talbesBase Tables

Materialized
View

Delta
tables

Delta
tables

Delta
tables

Changes
on

Tables

ビュー差分差分（一次差分）
View Definition

Query

apply

Changes
on

View

Modification

extract

calc

AFTER trigger and Transition Tables

SQL via SPI

executing the view definition query
rewritten by using Transition Tables

Creating Incrementally Maintainable Materialized Views (1)

CREATE INCREMENTAL MATERIALIZED VIEW mv AS
 SELECT x, y FROM R, S WHERE R.i = S.i;

Parser needs changes:
CreateMatViewStmt:
 CREATE OptNoLog incremental MATERIALIZED VIEW create_mv_target AS SelectStmt opt_with_data
 {
 CreateTableAsStmt *ctas = makeNode(CreateTableAsStmt);
 ctas->query = $8;
 ctas->into = $6;
 ctas->objtype = OBJECT_MATVIEW;
 ...
 $6->ivm = $3;
 $$ = (Node *) ctas;
 }
...
incremental: INCREMENTAL { $$ = true; }
 | /*EMPTY*/ { $$ = false; }

Syntax:

src/backend/parser/gram.y

Creating Incrementally Maintainable Materialized Views (2)
 Changes in ExecCreateTableAs() (backend/commands/createas.c)

 Check the view definition to forbid unsupported query.

 The query is rewritten before execution.

 For aggregates and DISTINCT support

 A unique index is created on the view if possible.

 AFTER triggers are created on all base tables.
Executor

tuples

DestIntoRel

CREATE INCREMENTAL MATERIALIZED VIEW
AS SELECT … FROM ...

Materialized
View

Analyzer

query tree
System
Catalog

view definition

check!

index

rewrite

TablesTablesTables

triggers

AFTER trigger
 Fired just after a base table is modified.

 In the IVM AFTER trigger function:

 Changes on the table are extracted.

 Changes on the view are calculated.

 The calculated changes are applied to the view.

Executor

INSERT INTO R …
DELETE R …
UPDATE R ...

TablesTablesTables

triggers

modify

fire

Materialized
View

incrementally
update

The changes on the table is extracted using Transition Table.

Transition Tables (1): What is Transition Table?
 Transition Tables:

 A feature of AFTER trigger.

 Changes on tables can be referred to in the trigger function like normal tables by specified names.

INSERT
UPDATE
DELETE changes old_table

new_table

AFTER trigger function

Table

tuples deleted from the table

tuples inserted into the table

SELECT * FROM old_table;

SELECT * FROM new_table;

refer to

Transition Tables (2): How are the changes collected?
 During modifying a table, each old and/or new tuple is put into tuplestores.

INSERT
UPDATE
DELETE

old_tuplestore

new_tuplestore

Table

old tuple

new tuple

 Tuplestore

 Temporary storage of tuples (in memory or disk)

 Used also for holdable cursor, CTE, set-returning functions, etc.

tuplestores

Transition Tables (3): How to access to Transition Tables?
 A transition table is accessed as an Ephemeral Named Relation (ENR)

 Tuples are stored in a tuplestore instead of database.

 Referenced by the names instead of OID

 Not exist in the catalogs

INSERT
UPDATE
DELETE

old_tuplestore

new_tuplestore

Table

old
tuple

new
tuple

 name: old_table

 name: new_table

Ephemeral Named Relations

SELECT * FROM old_table;

SELECT * FROM new_table;
reference
by name

Calculating Changes on View
 Execute the view definition query with some rewrite:

 Replacing the modified table with the transition table.

 The results are stored into a tuplestores.

DestTuplestore Tuplestore

System
Catalog

view definition

query tree

Executor

tuples

Tuplestores

Tuplestore
Transition

Tables

SELECT x, y FROM R, S WHERE ...

SELECT x, y FROM new_table_R, S WHERE ...

modified table

transition table

rewrite

Changes on View

Changes on Tables

Applying the Change to View
 Create Ephemeral Named Relations (ENRs) from tuplestores that

contains changes on the view.

 Apply these tuples in ENRs into the view.

 Executing SQL by using SPI.

 Use DELETE to remove tuples from the view.

 Use INSERT to insert tuples into the view.

 Use UPDATE to update aggregated values in the view.
DestTuplestore

System
Catalog

view definition

query tree

Executor

tuples

Tuplestore
Transition

Tablesrewrite

Tuplestore

ENRs

Changes on View

Materialized
View

apply by SQL

Changes on Tables

Recap: Incremental View Maintenance Implementation
 CREATE INCREMENTAL MATERIALIZED VIEW

 The parser and the function for this command are changed.

 Transition Tables is used to extract the table changes

 Tuples are stored in tuplestore and accessed as an Ephemeral

Named Relation (ENR).

 Tuplestore and ENR are also used for calculating and applying the

view changes.

 The view changes are applied by using SQL via SPI.

DestTuplestore

view definition
query tree

Executor

tuples

Tuplestore
Transition

Tables
rewrite

Tuplestore

ENRs

Changes on View

Materialized
View

apply by SQL

Changes on Tables

Summary
 Overview of query processing and utility commands

 The destination of results tuples are managed by DestReceiver

 SPI can be used to run SQL queries.

 Materialized View uses these infrastructure.

 Incremental View Maintenance Implementation uses also:

 AFTER trigger and transition tables

 tuplestore and Ephemeral Named Relation

THANK YOU
Yugo Nagata

(nagata @ sraoss.co.jp)

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38

