
Toward Implementing
Incremental View Maintenance
on PostgreSQL

Yugo Nagata @ SRA OSS, Inc. Japan.

PGConf.ASIA 2019
- Sep 9, 2019

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 2

About Me
● Yugo Nagata

– Software Engineer at SRA OSS, Inc. Japan
– R&D

● PostgreSQL experiences

– Technical support
– Consulting
– Education

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 3

Outline
● Introduction

– Views and materialize views
– Incremental View Maintenance (IVM)

● Implementing IVM on PostgreSQL

– What to be considered to implement IVM
– Our implementation and its details

● Examples

– Performance Evaluation
● Discussions

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 4

What is Incremental View
Maintenance (IVM)

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 5

Views

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

CREATE VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● A view is a virtual relation
defined by a query on base
tables.

– Only the definition query is
stored.

● The result is computed when
a query is issued to a view. Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 6

Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● Materialized views persist the
results in a table-like form.

● No need to compute the result
when a query is issued.

– Enables faster access to data.
● The data is not always up to date.

– Need maintenance.

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 7

Creating Materialized Views
CREATE MATERIALIZED VIEW V AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

● The data of a materialized view is
computed at definition time.

– This is similar to “CREATE TABLE
AS” statement.

– The result of the definition query is
inserted into the materialized view.

● Need maintenance to keep
consistency between the
materialized data and base tables.

insert

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

Materialized view
data

Table data Table data

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 8

Refreshing Materialized Views

● Need to re-compute the
result of the definition
query.

● Replacing the contents
of a materialized view
with the result.

insert

temporary table
device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

replace

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW V;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 9

Refreshing Materialized Views

insert

temporary table

merge

device
name pid 　G1 P1 　G2 P1
 G3 P2

parts
 pid price 　P1 10 　P2 20

V
name pid 　 price　G1 P1 　 10　G2 P1　 10
 G3 P2 20

* JOIN

diff

Table data Table data

Materialized view
data

REFRESH MATERIALIZED VIEW CONCURRENTLY V;

● With CONCURRENTLY
option, the materialized view
is refreshed without locking
out concurrent selects on the
view.

● Need to re-compute the result
of the definition query, too.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 10

Incremental View Maintenance
● Incremental View Maintenance (IVM)

– Compute and apply only the incremental changes to the
materialized views

Base relationsBase relations

Materialized view

Base relations
Updated

base relations

Incremental maintenance

IVM

Refreshing

V=Q v (D)

D u

Qv

D'=u (D)

Qv

V new=Qv (D ')

δu (D)

δu (V)

Base relations
Updated

base relations

Updated
base relations

Updated
materialized View

re
c
o
m

p
u

ta
t io

n

View
definition

Update query

Changes of
base tables

Changes of
materialized view

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 11

Basic Theory of IVM
● View definition

– Ex.) Natural join viewV ≝ R ⋈ S
● Change on a base tableR ← (R − ∇R ∪ ∆R)
● Calculation of change on view∇V = ∇R ⋈ S∆V = ∆R ⋈ S
● Apply the change to the viewV ← (V − ∇V ∪ ∆V)

R, S base tables∇R deleted tuples∆R inserted tuples
SELECT * FROM R NATURAL JOIN S;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 12

Basic Theory of IVM: Example (1)

number english

1 one

2 two

3 three

number roman

1 I

2 II

3 III

R S

number english roman

1 one I

2 two II

3 three III

V ≝ R ⋈ S natural
join

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 13

Basic Theory of IVM: Example (2)

number english

1 one → ONE

2 two

3 three

number roman

1 I

2 II

3 III

R ← (R − ∇R ∪ ∆R) S

number english roman

1 one I

∇V = ∇R ⋈ Snatural
join

number english

1 one

number english

1 ONE

∇R
∆R

number english roman

1 ONE I

∆V = ∆R ⋈ S
natural
join

Table R is changed

Calculate changes on view V

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 14

Basic Theory of IVM: Example (3)

number english roman

1 one I

∇V
number english roman

1 ONE I

∆V

number english roman

1 one → ONE I

2 two II

3 three III

V ← (V − ∇V ∪ ∆V)delete
insert

View V is update by applying
the calculated changes

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 15

Implementing IVM on PostgreSQL

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 16

Considerations on IVM Implementation(1)

● How to extract changes on base tables

– AFTER trigger and Transition Tables
– Another idea is logical decoding of WAL

● How to compute the delta to be applied to materialized views

– Basically, based on relational algebra (or bag algebra).
– Starting from simpler view definitions:

● Selection-Projection-Join views
● Some aggregate functions and GROUP BY

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 17

Considerations on IVM Implementation(2)

● When to maintain materialized views

– Immediate maintenance:
● The materialized view is updated in the same transaction where the

base table is updated.
– Deferred maintenance:

● The materialized view is updated after the transaction is committed
– When view is accessed
– As a response to user command (like REFRESH)
– periodically
– etc.

● Views with tuple duplicates or DISTINCT clause

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 18

Views with Tuple Duplicates

english roman

one I

two II

two II

three III

V
english roman

two II

∇V
delete

● Only one tuple of duplicated two must be deleted.
● DELETE statement can not be used because this delete two tuples.

SELECT english, roman
 FROM R JOIN S USING (id);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 19

Views with DISTINCT Clause

english roman

one I

two II

three III

V
english roman

two II

∇V
delete?

● A tuple is deleted if and only if duplicity of the tuple becomes zero.
● Additional tuple can not be inserted if there is already the same one.

SELECT DISTINCT english, greek
 FROM R JOIN S USING (id);

english roman

three III

∆Vinsert?

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 20

Our Implementation
● Working-in-Progress patch has been submitted

● Provides a kind of Immediate Maintenance

– Materialized views can be updated automatically and
incrementally after base tables are updated.

● Supports views including duplicate tuples or

DISTINCT clause in the view definition

– By using "counting algorithm"

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 21

Counting algorithm (1)
● Algorithm for handling tuple duplicate or DISTINCT in IVM

– The numbers of tuples are counted and this
information is stored in materialized views.

When tuples are to be inserted into the view, the count ses.

When tuples are to be deleted from the view, the count ses.

If the count becomes zero, this tuple is deleted.

english roman count

one I 1

two II 2

three III 1

V

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 22

Counting algorithm (2)
● Algorithm for handling tuple duplicate or DISTINCT in IVM

– The numbers of tuples are counted and this information is
stored in materialized views.

● Tuples to be inserted into the view → increment the count
● Tuples to be deleted from the view → decrement the count
● If the count becomes zero, this tuple can be completely deleted.

english roman count

one I 1

two II 2 → 1

three III 1 → 2

V
english roman count

two II 1

∇V
delete

english roman count

three III 1

∆Vinsert

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 23

Implementation Details

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 24

Creating Materialized Views (1)
● CREATE INCREMENTAL MATERIALIZED VIEW

– The tentative syntax to creates materialized views with
IVM support

● Views are updated automatically and incrementally
after base tables are changed

CREATE INCREMENTAL MATERIALIZED VIEW MV AS
 SELECT device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 25

Creating Materialized Views (2)
● When populating materialized views, rewritten view

definition query is used.

– The number of tuples are counted by adding count(*) and
GROUP BY to the query.

– The result of count is stored in the matview as a special
column named "__ivm_count__".

CREATE INCREMENTAL MATERIALIZED VIEW MV AS
 SELECT count(*) AS __ivm_count__,
 device_name, pid, price
 FROM devices d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 26

Creating Materialized Views (3)
● AFTER triggers are created on all base tables.

– For INSERT, DELETE, and UPDATE command
– Statement level
– With Transition Tables

● Triggers are Created automatically and internally rather than
issuing CREATE TRIGGER statement directly.
– Similar to the implementation of foreign key constrains

CREATE TRIGGER IVM_trigger_upd_16598
 AFTER UPDATE ON devises
 REFERENCING NEW TABLE AS ivm_newtable OLD TABLE AS ivm_oldtable
 FOR EACH STATEMENT
 EXECUTE FUNCTION IVM_immediate_maintenance(‘public.mv’);

Example of an equivalent query:

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 27

Transition Tables

● This is a feature of AFTER trigger since PostgreSQL 10.
● Changes on tables can be referred in the trigger function using

table names specified by REFERENCING clause.

– ivm_oldtable contains tuples deleted from the table in a statement.
– ivm_newtable contains tuples newly inserted into the table.
– In theory, corresponding to ∇R and ∆R respectively.

CREATE TRIGGER IVM_trigger_upd_16598
 AFTER UPDATE ON devises
 REFERENCING NEW TABLE AS ivm_newtable OLD TABLE AS ivm_oldtable
 FOR EACH STATEMENT
 EXECUTE FUNCTION IVM_immediate_maintenance(‘public.mv’);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 28

Calculating Delta on Views
● Calculate the delta on materialized views by rewriting view query

– Replacing the base table with the transition table.
– Using count(*) and GROUP BY in order to count the duplicity of tuples.

● The results are stored into temporary tables .

– “old delta” and “new delta” corresponding to ∇V and ∆V, respectively.

CREATE TEMPORARY TABLE tempname_new AS
 SELECT count(*) AS __ivm_count__, device_name, pid, price
 FROM ivm_newtable d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

CREATE TEMPORARY TABLE tempname_old AS
 SELECT count(*) AS __ivm_count__, device_name, pid, price
 FROM ivm_oldtable d
 JOIN parts p
 ON d.pid = p.pid
 GROUP BY device_name, pid, price;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 29

Applying Delta to View (1)
● Update the view by merging calculated delta tables.

– For each tuple in delta tables :
● If the corresponding tuple already exists, the value of

__ivm_count__ is updated
– decrement for old delta, increment for new delta

● When the values becomes zero, the corresponding tuple should
be deleted.

● If a tuple in new delta doesn’t exist in the view, insert this into
the view.

– Using modifying CTE (WITH clause)

● Building SQL strings and execute these via SPI.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 30

Applying Delta to View (2)
● Old delta: decrement __ivm_count__, or delete an old tuple

WITH t AS (
 SELECT diff.__ivm_count__,
 (diff.__ivm_count__ = mv.__ivm_count__) AS for_dlt,
 mv.ctid
 FROM matview_name AS mv, tempname_old AS diff
 WHERE (mv.device_name, mv.pid, mv.price)
 = (diff.device_name, diff.pid, diff.price)
),
updt AS (
 UPDATE mateview_name AS mv
 SET __ivm_count__ = mv.__ivm_count__ - t.__ivm_count__
 FROM t
 WHERE mv.ctid = t.ctid AND NOT for_dlt
)
 DELETE FROM matview_name AS mv
 USING t
 WHERE mv.ctid = t.ctid AND for_dlt;

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 31

Applying Delta to View (3)
● New delta: increment __ivm_count__, or insert a new tuple

WITH updt AS (
 UPDATE matview_name AS mv
 SET __ivm_count__ = mv.__ivm_count__ + diff.__ivm_count__
 FROM temptable_new AS diff
 WHERE (mv.device_name, mv.pid, mv.price)
 = (diff.device_name, diff.pid, diff.price)
 RETURNING diff.device_name, diff.pid, diff.price
)
 INSERT INTO matview_name
 (SELECT * FROM temptable_new AS diff
 WHERE (diff.device_name, diff.pid, diff.pric)
 NOT IN (SELECT * FROM updt));

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 32

Aggregate Functions Support
● Supporting, count, sum, min, max, avg

– with or without GROUP BY

● Expressions specified in GROUP BY must appear in the
target list of views.

● In addition to __ivm_count__, one or more extra hidden
columns are added to the view.
– For example, __ivm_count_avg__ and __ivm_sum_avg__ are added

for avg function.

● Aggregates are performed on delta tables, and aggregated
values in the view are updated using the results

– The way of updating depends on the kind of aggregate function.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 33

Updating Aggregated Values
● count(x) ← count(x) ± [count(x) from delta table]
● sum(x) ← sum(x) ± [sum(x) from delta table]

– However, this becomes NULL if count(x) results in 0.
● avg(x) ← (sum(x) ± [sum(x) from delta]) / (count(x) ± [count(x) from delta])

– NULL if count(x) results in 0.
● min(x)

– When tuples are inserted:
● Use the smaller one between the current min value in the view and the min value

calculated from the new delta table.

– When tuples are deleted:
● If the current min value equals to the min from the old delta table, it

needs re-computation.
● Otherwise, the current value remains.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 34

Access to Materialized Views
● When SELECT is issued for materialized views with IVM:

– case 1: Defined with DISTINCT:
● All columns (except to __ivm_*) of each tuple are returned.
● Duplicity of tuples are already eliminated by GROUP BY.

– case 2: DISTINCT is not used:
● Returns each tuple __ivm_count__ times.
● By rewriting the SELECT query to replace the view with a

sub-query which joins the view and generate_series
function.

 SELECT mv.* FROM mv, generate_series(1, mv.__ivm_count__);

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 35

Examples

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 36

Example 1
postgres=# CREATE INCREMENTAL MATERIALIZED VIEW m AS SELECT * FROM t0;
SELECT 3
postgres=# SELECT * FROM m;
 i

 3
 2
 1
(3 rows)

postgres=# INSERT INTO t0 VALUES (4);
INSERT 0 1
postgres=# SELECt * FROM m;
 i

 3
 2
 1
 4
(4 rows)

Insert a tuple into the base table.

Creating a materialized view with IVM option

The view is automatically updated.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 37

Example 2-1
postgres=# SELECT * FROM t1;
 id | t
----+---
 1 | A
 2 | B
 3 | C
 4 | A
(4 rows)

postgres=# CREATE INCREMENTAL MATERIALIZED VIEW m1 AS SELECT t FROM t1;
SELECT 3
postgres=# SELECT * FROM m1 ORDER BY t;
 t

 A
 A
 B
 C
(4 rows)

Creating a materialized view with tuple duplicates

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 38

Example 2-2
postgres=# INSERT INTO t1 VALUES (5, 'B');
INSERT 0 1
postgres=# DELETE FROM t1 WHERE id IN (1,3);
DELETE 2
postgres=# SELECT * FROM m1 ORDER BY t;
 t

 A
 B
 B
(3 rows)

Before:

 t

 A
 A
 B
 C
(4 rows)

The view with tuple duplicates is correctly updated.

Inserting (5,B) into
and deleting (1, A), (3, C) from
the base table.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 39

Example 3

postgres=# SELECT *, __ivm_count__ FROM m1;
 t | __ivm_count__
---+---------------
 B | 2
 B | 2
 A | 1
(3 rows)

postgres=# EXPLAIN SELECT * FROM m1;
 QUERY PLAN
--
 Nested Loop (cost=0.00..61.03 rows=3000 width=2)
 -> Seq Scan on m1 mv (cost=0.00..1.03 rows=3 width=10)
 -> Function Scan on generate_series (cost=0.00..10.00 rows=1000 width=0)
(3 rows)

__ivm_count__ column is invisible for users
when "SELECT * FROM ..." is issued,

but users can see this by specifying it explicitly.

The internal usage of generate_series
function is visible in the EXPLAIN result.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 40

Simple Performance Evaluation (1)
● Materialized views of a simple join using pgbench tables:

CREATE MATERIALIZED VIEW mv_normal AS

 SELECT aid, bid, abalance, bbalance

 FROM pgbench_accounts JOIN pgbench_branches
USING (bid)

 WHERE abalance > 0 OR bbalance > 0;

CREATE INCREMENTAL MATERIALIZED VIEW mv_ivm AS

 SELECT aid, bid, abalance, bbalance

 FROM pgbench_accounts JOIN pgbench_branches
USING (bid)

 WHERE abalance > 0 OR bbalance > 0;

Scale factor of pgbench: 100

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 41

Simple Performance Evaluation (2)
test=# REFRESH MATERIALIZED VIEW mv_normal ;
REFRESH MATERIALIZED VIEW
Time: 11210.563 ms (00:11.211)

test=# CREATE INDEX on mv_ivm (aid,bid);
CREATE INDEX
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 10 | 10
(1 row)

Time: 2.498 ms
test=# UPDATE pgbench_accounts SET abalance = 1000 WHERE aid = 1;
UPDATE 1
Time: 18.634 ms
test=# SELECT * FROM mv_ivm WHERE aid = 1;
 aid | bid | abalance | bbalance
-----+-----+----------+----------
 1 | 1 | 1000 | 10
(1 row)

Creating an index on mv_ivm

The standard REFRESH of mv_normal
took more than 10 seconds.

Updating a tuple in pgbench_accounts took 18ms.

mv_ivm was updated automatically and correctly.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 42

Simple Performance Evaluation (3)
test=# DROP INDEX mv_ivm__aid_bid_idx ;
DROP INDEX
Time: 10.613 ms

test=# UPDATE pgbench_accounts SET abalance = 2000 WHERE aid = 1;
UPDATE 1
Time: 3931.274 ms (00:03.931)

However, if there are not indexes on mv_ivm, it
took about 4 sec.

Although this is faster than normal REFRESH,
appropriate indexes are needed on
materialized views for efficient IVM.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 43

Simple Performance Evaluation (4)
● Materialized views of aggregates on pgbench_accounts

CREATE MATERIALIZED VIEW mv_normal2 AS

 SELECT bid, count(abalance), sum(abalance), avg(abalance)

 FROM pgbench_accounts GROUP BY bid;

CREATE INCREMENTAL MATERIALIZED VIEW mv_ivm2 AS

 SELECT bid, count(abalance), sum(abalance), avg(abalance)

 FROM pgbench_accounts GROUP BY bid;

Scale factor of pgbench: 1000

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 44

Simple Performance Evaluation (5)
test=# REFRESH MATERIALIZED VIEW mv_normal2 ;
REFRESH MATERIALIZED VIEW
Time: 30494.729 ms (00:30.495)

test=# SELECT * FROM mv_ivm2 WHERE bid = 1;
 bid | count | sum | avg
-----+--------+-------+-------------------------
 1 | 100000 | -1855 | -0.01855000000000000000
(1 row)

test=# UPDATE pgbench_accounts SET abalance = abalance + 1000 WHERE aid = 1;
UPDATE 1
Time: 30.215 ms

test=# SELECT * FROM mv_ivm2 WHERE bid = 1;
 bid | count | sum | avg
-----+--------+------+-------------------------
 1 | 100000 | -855 | -0.00855000000000000000
(1 row)

The standard REFRESH of mv_normal2
took 30 seconds.

Updating a tuple in pgbench_accounts took 30 ms.

mv_ivm2 was updated automatically and correctly.

x 1000 faster!

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 45

Current Restrictions
● Supported:

– selection, projection, inner join, DISTINCT
– Some aggregate functions and GROUP BY

● count, sum, avg, min/max
● Not supported:

– Other aggregates, HAVING
– Self-join, sub-query
– outer join
– CTE, window functions
– Set operations (UNION, EXCEPT, INTERSECT)

● We are now working on self-join, outer-join, and sub-query.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 46

Timing of View Maintenance
● Currently, only Immediate Maintenance is supported:

– Materialized views are updated immediately when a base table is modified.

● Deferred Maintenance:

– Materialized views are updated after the transaction, for example, by the
user command like REFRESH.

– Need to implement a mechanism to maintain “logs” for recording changes
of base tables and another algorithm to update materialized views.

● There could be another implementation of Immediate Maintenance

– Materialized views are updated at the end of a transaction that modified
base tables, rather than in AFTER trigger.

– Needs “logs” mechanism as well as Deferred.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 47

About counting algorithm
● "__ivm_count__" is treated as a special column name.

– There are additional __ivm_* columns for aggregate views.
– Users can not use these names in materialized views supporting IVM.
– This restriction is not applied to tables, views, or normal materialized views.

● generate_series function is used when materialized views with tuple
duplicates is accessed:

– We can make a new set returning function instead of generate_series.
– Performance issues:

● Planner’s estimation of rows number is wrong.
● The cost of join with this function could be high.

→ We might have to add a new plan node for IVM materialized views rather
than using a set returning function.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 48

Concurrent Transactions
● When concurrent transactions modify different base tables under a

materialized view, we need to prevent update anomalies on the
materialized view.

● In READ COMMITTED
– Lock the materialized view to wait for concurrent transactions to finish.
– Update the view by referring table changes which occurs in other

transactions during lock waiting.
● In REPEATABLE READ or SERIALIZABLE

– Table changes occurred in other transactions must not be visible, and views
can not be maintained correctly in AFTER triggers.

– When competing transactions are detected, raise an error and abort
immediately.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 49

Other Issues
● Performance improvements

– Reducing CREATE/DROP of temporary tables
● Using tuplestore instead

– Query execution for applying delta to views
● Using plan cache, converting to C rather than issuing SQL, etc.

● Optimizations

– Detecting “Irrelevant Update”
● Table changes which leave the materialized view unchanged

– “counting” is unnecessary if a view doesn’t have DISTINCT or duplicates.
– When the overhead of IVM is higher than normal REFRESH, it would be better

to use the latter.
● Cost estimation of optimizer may be usable.

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 50

Summary
● Our implementation of IVM on PostgreSQL

– Immediate View Maintenance using AFTER trigger
– Views with tuple duplicates or DISTINCT

● counting algorithm
– Some aggregates and GROUP BY

● Future works:

– Support self-join and sub-queries (in progress)
– Deferred Maintenance using table change logs
– Performance improvement and optimizations

● Working-in-Progress patch has been submitted to pgsql-hackers

– Subject: Implementing Incremental View Maintenance
– Github: https://github.com/sraoss/pgsql-ivm/

https://github.com/sraoss/pgsql-ivm/

Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 51

Thank you

	ページ 1
	ページ 2
	ページ 3
	ページ 4
	ページ 5
	ページ 6
	ページ 7
	ページ 8
	ページ 9
	ページ 10
	ページ 11
	ページ 12
	ページ 13
	ページ 14
	ページ 15
	ページ 16
	ページ 17
	ページ 18
	ページ 19
	ページ 20
	ページ 21
	ページ 22
	ページ 23
	ページ 24
	ページ 25
	ページ 26
	ページ 27
	ページ 28
	ページ 29
	ページ 30
	ページ 31
	ページ 32
	ページ 33
	ページ 34
	ページ 35
	ページ 36
	ページ 37
	ページ 38
	ページ 39
	ページ 40
	ページ 41
	ページ 42
	ページ 43
	ページ 44
	ページ 45
	ページ 46
	ページ 47
	ページ 48
	ページ 49
	ページ 50
	ページ 51

