
Copyright © 2019 SRA OSS, Inc. Japan All rights reserved. 1

Setup a High-Availability and Load Balancing

PostgreSQL Cluster

- New Features of Pgpool-II 4.1 -

SRA OSS, Inc. Japan

Bo Peng

pengbo@sraoss.co.jp

PGConf.ASIA 2019, Bali

2019-09-10

mailto:pengbo@sraoss.co.jp

2Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Who am I?

• Bo Peng

• Chinese National, based in Tokyo

• Organization: SRA OSS

• Experience in using PostgreSQL since 2016

• Current work

• Open source software technical support

• Monitoring software

• Clustering software

• Installation work

• Pgpool-II developer

• Chinese documentation translation

• Committer since Pgpool-II 3.5 (2015)

• Release management, bug fix, SQL parser

Outline

◼ High-Availability Database Cluster

◼ What is Pgpool-II?

⚫ Advantages of using Pgpool-II to setup HA cluster

◼ New features of Pgpool-II 4.1

⚫ Statement level load balancing

⚫ Automatic failback

⚫ Performance improvements

⚫ Improvements of internal queries issued by Pgpool-II

⚫ Import PostgreSQL 12 new parser

3Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

4Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Part 1
High-Availability Database Cluster

Database High-Availability Cluster

Why high-availability database cluster?

5Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Web Application

Primary

Standby

Standby

Write

Read

Read

Web Application

Primary

Standby
R

e
p
lic

a
tio

n

Web Application

Primary

New Primary

R
e

p
lic

a
tio

n

Failover

• Data redundancy

• If the primary server fails, other standby

server becomes the new primary quickly

• To ensure data is always available to

your application

• Eliminate downtime

High availability

• Multiple servers return the same data

• Distribute queries between multiple

servers

• Optimize resource utilization

Load balancing

PostgreSQL Streaming Replication Issues

◼ Automatic failover

⚫ PostgreSQL doesn't provide build-in automatic failover

feature

⚫ Promotion is not automated

⚫ The required configuration is complex

✓detect PostgreSQL failure

✓promote another standby server to the new primary

✓synchronize other standby nodes with the new master

◼ Load balancing

⚫ PostgreSQL doesn't provide load balancing feature

⚫ RAED/WRITE queries distribution logic is required in

application

6Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

HA management solutions for PostgreSQL

7Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Solutions

▪ Pacemaker/Corosync + DRBD

• Automatic failover

▪ Pgpool-II

• Automatic failover

• Load balancing

8Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Part 2
What is Pgpool-II?

About Pgpool-II

◼ Cluster management tool for PostgreSQL
⚫ Support for PostgreSQL 6.4 or later

⚫ OSS, BSD license

◼ Feature-rich

⚫ Automatic failover

⚫ Watchdog (High availability for Pgpool-II)

⚫ Load balancing

⚫ Online recovery

⚫ In memory query caching

⚫ Connection pooling

9Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Basic Idea of Pgpool-II

10Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Primary

Standby

Standby

WAL

WAL

Streaming

Replication

READ / WRITE

Queries READ

Automatic failover

11Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Primary

Standby

WAL

Streaming

Replication

READ / WRITE

queries promote

New Primary

1. Primary server fails

2. Pgpool-II detects PostgreSQL failure and triggers failover

• When health check fails

• When Read/Write fails on PostgreSQL backend

• By remote Pgpool-II node (Watchdog)

3. One of the standby servers gets promoted to the new primary

4. Other standby servers are made to follow the new primary

• Pgpool-II maintains the service availability even if

PostgreSQL server fails

• But what if Pgpool-II fails … Pgpool-II could be the

single point of failure (SPOF)

12Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Problem …

SPOF

SPOF Solution: Pgpool-II with Watchdog

13Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Heartbeat

SPOF Solution
• Pgpool-II Redundancy

• Use Watchdog to coordinate multiple Pgpool-II nodes

Watchdog

Watchdog
Watchdog

Pgpool-II with Watchdog

14Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Watchdog

• One of the Pgpool-II nodes is selected as master watchdog

• Synchronize the backend status across all Pgpool-II nodes

• Perform life checking on Pgpool-II nodes (heartbeat, query)

• Coordinate the selection of master/coordinator node to ensure the quorum in the cluster

• Coordinate failover/failback requests

• Automatic Virtual-IP switching

Watchdog

Heartbeat

Primary

WAL

WAL

Standby

Standby

Watchdog Watchdog

VIP

master

standby standby

SQL

Pgpool-II fails

15Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Watchdog

Heartbeat

Primary

WAL

WAL

Standby

Standby

Watchdog Watchdog

VIP

master standby

SQL

If master Pgpool-II node fails,

• Release VIP from old master Pgpool-II node

• Promote standby Pgpool-II node to the new master

• Assign VIP to the new master Pgpool-II node

• Ensure service availability and continuity

◼ Distribution of database workloads across multiple backend servers

⚫ Send READ queries to any backend server

⚫ Send WRITE queries to primary only

◼ Load balancing works best when a lot of users execute many read-only queries at the same time

◼ Load balancing node is selected at the beginning of a session (Default)

◼ Possible to select load balancing node per statement

(From Pgpool-II 4.1: statement_level_load_balance)

◼ Parameters related to load balancing:

⚫ white_function_list/black_function_list

⚫ black_query_pattern_list

⚫ database_redirect_preference_list

⚫ app_name_redirect_preference_list

⚫ etc.

Load Balancing

16Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Primary

Standby

Standby

WALWAL

Streaming

Replication

READ / WRITE

Queries

READ

Advantages of using Pgpool-II to setup HA Cluster

◼ Automatic failover

⚫ In case primary fails, standby can become the new primary automatically

◼ Load balancing

⚫ Distribute READ queries across PostgreSQL primary/standby servers to

distribute database load

◼ High availability for Pgpool-II

⚫ Use Watchdog to avoid Single Point of Failure (SPOF)

◼ Online recovery

⚫ Synchronize and attach PostgreSQL standby server

◼ In memory query caching

⚫ Allow to save a pair of SELECT statement and its result in cache

⚫ If an identical SELECT comes in, Pgpool-II fetches the result from cache

◼ Connection pooling

⚫ Maintain established connections to PostgreSQL so that the connections can

be reused whenever a new connection with the same properties

⚫ Reduce the connection overhead

17Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

18Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Part 3
What's New in Pgpool-II 4.1.

Pgpool-II 4.1 Major Features

• Statement level load balancing

• Automatic failback

• Performance enhance
▪ Shared relation cache

▪ Speed up the large INSERT and UPDATE statements

• Improvements of internal queries issued by Pgpool-II

• Modify temporary table checking method

• Reduce internal queries against system catalogs

• Routing relcache queries to load balance node

• Import PostgreSQL 12 new parser

19Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Statement Level Load Balancing

Session level load balancing
• The load balancing node is decided at the session start time

• The load balancing node will not be changed until the session ends

• Applications that use connection pooling remain connections open to the

backend server. Because the session may be held for a long time, the load

balancing node does not change until the session ends

Statement level load balancing
• Allow to select load balancing node per statement

• statement_level_load_balance = on

20Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

New in Pgpool-II 4.1

Automatic Failback

Until Pgpool-II 4.0

◼ If a standby node is removed from Pgpool-II due to a temporary network

problem, it will stay down status, even if the node has resumed replication

with primary server and is up to date

◼ Perform a manual failback (such as pcp_attach_node) or restart Pgpool-II

21Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Automatic Failback

◼ Long awaited feature

◼ Safe way to automatically attach "healthy" standby servers

◼ Use pg_stat_replication to check if the standby server is connected to primary

server

◼ If pg_stat_replication.state is "streaming" and node status is DOWN, then

attach the node

◼ PostgreSQL 9.1 or later is required

New in Pgpool-II 4.1

pgpool.conf

auto_failback = on # enable auto failback
auto_failback_interval = 60 # perform failback in specified interval

22Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Performance Improvements (1)

Shared Relation Cache

Shared Relation Cache (1)

◼ Why relation cache for system catalogs?

⚫ Pgpool-II issues queries to PostgreSQL's system catalog, when a table or

function appears in client's query

✓ To determine whether a table in client's query is a temporary table or not

✓ To determine whether a table in client's query is an unlogged table or not

✓ To determine whether a function in client's query is "immutable" or not

⚫ Store the results in local relation cache

⚫ When the same object appears in the subsequent queries, Pgpool-II obtains

information from the local cache

23Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Local Relation Cache

SELECT … FROM t1

SELECT … FROM t1

t1

…

…
obtain information

from local cache asceses to system catalog and

store the results in local relation

cache

Primary

Shared Relation Cache(2)

24Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

◼ Problem in the existing relation cache

⚫ Pgpool-II child process stores the relation cache in private

memory

⚫ Other child process has to access system catalogs, even if same

table information is stored in other child process's local relation

cache

Shared Relation Cache

◼ Share the relation cache information among Pgpool-II child

processes

◼ Reduce accesses to PostgreSQL system catalogs

pgpool.conf

enable_shared_relcache = on

New in Pgpool-II 4.1

Shared Relation Cache (3)

25Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

◼ Shared relation cache

1. If the table/function info is not found in the local relation cache, then Pgpool-II checks the

shared relation cache

2. If the table/function info is already in the shared relation cache, just copy the info to the

local cache

3. If it is not in the shared relation cache, Pgpool-II accesses the system catalogs and stores

the result in the local cache. Also copy the result to the shared relation cache

New in Pgpool-II 4.1

pgpool.conf

enable_shared_relcache = on

Local Relation Cache

t1

Local Relation Cache

Shared Relation Cache

t1t1
t1?

t1 info

no table t1 info in local cache,

check the shared relation cache

copy table t1 info to the local cache

Shared Relation Cache (4)

26Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Benchmarking Results

1. Create 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 tables

2. Access tables using pgbench

pgpool.conf
enable_shared_relcache = on

pgbench -C -T 30 -c 30 –p 9999 -n -f script_file.sql

0

0.5

1

1.5

2

2.5

3

3.5

1 10 20 30 40 50 60 70 80 90 100

S
P

E
E

D
U

P

NUMBER OF TABLES

PGBENCH RESULTS

enable_shared_relcache = off enable_shared_relcache = on

27Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Performance Improvements (2)

Speed Up the Large INSERT and UPDATE Statements

Speed Up the Large INSERT and UPDATE Statements

◼ Pgpool-II has imported PostgreSQL raw parser

◼ In master-slave mode, Pgpool-II only needs very little information to decide

where it needs to send the query, especially for the INSERT and UPDATE

statements

◼ However, the parser taken from PostgreSQL source parses the complete

query including the value lists

28Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

◼ Use two parsers

⚫ src/parser/gram.y : the standard parser taken from PostgreSQL source

⚫ src/parser/gram_minimal.y : the minimal parser

◼ Short circuit the INSERT and UPDATE statement parsing as soon as we

have the required information

New in Pgpool-II 4.1

Speed up the large INSERT and UPDATE statements

Test results for large binary INSERT

29Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

postgres=# ¥i sample.sql
id
—
1
(1 row)
INSERT 0 1
Time: 4218.450 ms

1. test with Pgpool-II 4.0

postgres=# ¥i sample.sql
id
—-
1
(1 row)
INSERT 0 1
Time: 1014.142 ms

2. test with PostgreSQL

postgres=# ¥i sample.sql
id
—
1
(1 row)
INSERT 0 1
Time: 1395.559 ms

3. test with Pgpool-II 4.1

3 times faster

sample.sql 27MB

INSERT INTO "t1" ("content", "checksum")
VALUES
('¥x303030303 ... '::bytea, ...

30Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Improvements of Internal Queries Issued by Pgpool-II

• Modify Temporary Table Checking Method

• Reduce Internal Queries against System Catalogs

• Routing relcache Queries to Load Balance Node

Modify Temporary Table Checking Method

◼ Pgpool-II issues queries to PostgreSQL's system catalog, to determine whether a

table in client's query is a temporary table or not

◼ From Pgpool-II 4.1 the temporary table checking method is configurable

◼ new parameter: check_temp_table

⚫ catalog : existing method (catalog lookup, same as check_temp_table = on)

⚫ trace : Trace "CREATE TEMP TABLE/DROP TABLE"

⚫ none : no temp table checking (same as check_temp_table = off)

31Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

New in Pgpool-II 4.1

◼ Completely eliminate system catalog look up

◼ faster and able to reduce the load on the primary server

◼ Implementation

1. Trace CREATE TEMP TABLE. If new temp table is created (and committed), memorize it in a list.

2. To know whether it's temp table or not, search the list.

3. Trace DROP TABLE. If a table is dropped (and committed), remove the table from the list.

4. When a transaction aborts, remove tables from the list if any.

◼ Note : Impossible to trace inside functions or triggers

pgpool.conf

check_temp_table = trace

Reduce internal queries against system catalogs

◼ Pgpool-II issues 7 queries or more to obtain various

information from PostgreSQL system catalogs

◼ Because Pgpool-II works with multiple version of PostgreSQL,

the queries below are issued to know if the object exists

⚫ Query to know if pg_namespace exists

⚫ Query to know if to_regclass exists

◼ Pgpool-II 4.1

⚫ Reduce such internal queries

⚫ Determine PostgreSQL version to know what kind of queries are

needed

32Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

SELECT count(*) from (SELECT has_function_privilege('pengbo', 'pg_catalog.to_regclass(cstring)', 'execute') WHERE ...

SELECT count(*) FROM pg_catalog.pg_class AS c WHERE c.relname = 'pg_namespace'

SELECT count(*) FROM pg_class AS c, pg_namespace AS n WHERE c.oid = pg_catalog.to_regclass('"t1"') AND c.relnamespace = ...

SELECT count(*) FROM pg_catalog.pg_class AS c, pg_attribute AS a WHERE c.relname = 'pg_class' AND a.attrelid = c.oid ...

SELECT count(*) FROM pg_catalog.pg_class AS c, pg_namespace AS n WHERE c.relname = 't1' AND c.relnamespace = n.oid AND ...

SELECT count(*) FROM pg_catalog.pg_class AS c, pg_catalog.pg_attribute AS a WHERE c.relname = 'pg_class' AND a.attrelid ...

SELECT count(*) FROM pg_catalog.pg_class AS c WHERE c.oid = pg_catalog.to_regclass('"t1"') AND c.relpersistence = 'u' ...

New in Pgpool-II 4.1

Routing relcache Queries to Load Balance Node (1)

◼ Until 4.0, Pgpool-II issues relcache related queries to primary server

◼ Pgpool-II 4.1 allows to send relcache related queries against standby

server, rather than primary server

◼ relcache_query_target = master/load_balance_node

⚫ load_balance_node : relcache queries will be routed to load balance node

⚫ master : relcache queries will be routed to master node

◼ Note: if you send query to the standby node, recently created tables and

rows might not be available on the standby server yet because of

replication delay. To get the latest information, the default value master is

recommended

◼ Setting to load_balance_node is especially useful for such a system

where primary PostgreSQL server is geographically distant

33Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

pgpool.conf

relcache_query_target = master/load_balance_node

Routing relcache Queries to Load Balance Node (2)

34Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

pgpool.conf

relcache_query_target = load_balance_node
backend_weight0 = 0

Pgpool-II 4.0 Pgpool-II 4.1

Import PostgreSQL 12 New Parser

◼ Pgpool-II has SQL parser
⚫ To accurately parse the SQLs

⚫ To rewrite the query

◼ In every major release, we import the latest version of

PostgreSQL's SQL parser to Pgpool-II

◼ Import PostgreSQL 12 parser to Pgpool-II 4.1

⚫ Add new VACUUM options: SKIP_LOCKED, INDEX_CLEANUP and TRUNCATE

⚫ Add COMMIT AND CHAIN and ROLLBACK AND CHAIN commands

⚫ Add a WHERE clause to COPY FROM

⚫ Allow to use CREATE OR REPLACE AGGREGATE command

⚫ Allow to use mcv (most-common-value) in CREATE STATISTICS

⚫ ADD REINDEX option CONCURRENTLY

⚫ Add EXPLAIN option SETTINGS

35Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Future Work

◼ Make Pgpool-II more user-friendly

⚫ Easy to configure

⚫ Enhance documentation

◼ Improve regression test

◼ Implementation the logger process

36Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Summary

◼ High-Availability database cluster

◼ Advantages of using Pgpool-II to setup HA cluster

⚫ Automatic failover

⚫ Load balancing

⚫ Online recovery

⚫ Watchdog

◼ New Features of Pgpool-II 4.1

⚫ Statement level load balancing

⚫ Automatic failback

⚫ Performance improvements

⚫ Improvements of internal queries issued by Pgpool-II

⚫ Import PostgreSQL 12 new parser

37Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Links

◼ Wiki

⚫ https://pgpool.net/mediawiki/index.php/Main_Page

◼ Documentation

⚫ http://www.pgpool.net/docs/latest/en/html/

◼ Repository

⚫ https://git.postgresql.org/gitweb/?p=pgpool2.git;a=summary

◼ ML

⚫ https://pgpool.net/mediawiki/index.php/Mailing_lists

◼ Bug report

⚫ https://www.pgpool.net/mantisbt/

38Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Welcome Volunteers!
Please join Pgpool-II development community!

39Copyright © 2019 SRA OSS, Inc. Japan All rights reserved.

Thank you!

Terima Kasih!

